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Abstract
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1 Introduction

Do inefficiently low energy prices today reduce the effectiveness of carbon pricing in the future?

Abundant fossil fuel resources priced below their social cost have set industrial economies on a path

of energy-inefficient development and rising anthropogenic carbon emissions. Current global energy

infrastructure comprises tens of trillions of dollars of assets and reflects two centuries of technolog-

ical innovation—and approximately 80% of energy produced comes from burning fossil fuels that

contribute to climate change (Seto et al., 2016). Climate change impacts such as extreme tempera-

tures, hurricanes, and wildfires are now causing billions of dollars of economic damage annually, but

carbon pricing policies intended to curb greenhouse gas emissions continue to face global opposition.

In the United States, over fifty carbon pricing bills have been introduced by Congress in the last

three decades; none has passed. Jurisdictions that have successfully implemented carbon pricing

schemes, such as the European Union and Canada, struggle to set prices that fully internalize the

social costs of energy consumption. Some policymakers have despaired at the political feasibility of

such reforms, instead proposing alternative policies such as clean energy subsidies and technology

standards (Shearer and Nace, 2010). Current U.S. government proposals, for example, earmark

over $400 billion for subsidizing industrial energy efficiency improvements (DNC, 2021).

In the absence of such policies, global energy usage is projected to increase by more than 50%

by mid-century. The increasing trend in energy usage is even steeper in developing countries such

as India and China, which are opening the equivalent of one new coal power plant every week

(Myllyvirta and Shearer, 2021). The largest consumer of this energy is the industrial sector, and

the durable nature of capital means that many energy-inefficient manufacturing plants that open

when energy is dirty and cheap will contribute to global emissions for many years (EIA, 2019). The

effects of inefficiently low energy prices on future industrial energy efficiency, which we refer to as

“technology lock-in”, are relevant for currently proposed policies. Quantifying the magnitude and

duration of lock-in and understanding its causes are necessary to predict industrial responses to

climate policies and to efficiently design them to counteract lock-in.

This paper estimates the extent to which the energy prices that manufacturing plants pay in

their first year of operations determine their lifetime energy usage and studies the causes and
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consequences of this technology lock-in. When a plant enters the market, it chooses a combination

of factor inputs to use in production based on entry-year prices and beliefs about future prices. We

quantify the magnitude and persistence of the effects initial energy prices have on manufacturing

energy usage, and mechanisms for these effects. From a policy perspective, ignoring the dynamic

effect of current energy prices on future energy use understates the benefits of pricing carbon

today. If new plants choose different underlying production technologies based on initial prices,

then incentivizing the initial adoption of energy-efficient technologies may play an important role

in reducing energy usage. If incumbent plants can’t reoptimize their energy usage largely due to

capital adjustment costs, then targeted technology subsidies may be a priority to encourage the

turnover of energy-inefficient capital.

The first part of this paper provides empirical evidence on the existence and duration of technol-

ogy lock-in. To do so, we assess how initial electricity prices affect manufacturing plants’ long-run

energy intensity, conditional on current prices. We measure plants’ energy intensities (i.e., energy

use per dollar revenue) and input prices using restricted-access microdata from the U.S. Census

of Manufactures (CMF) and the Annual Survey of Manufacturing (ASM) for the years 1976 to

2011. Since electricity prices may be correlated with other shocks to manufacturing plants’ input

demands, we use shift-share instruments to isolate plausibly exogenous price variation (Bartik, 1991;

Goldsmith-Pinkham et al., 2020). The instruments exploit national changes in coal, natural gas,

and petroleum prices, weighted by each state’s use of these fuels to generate electricity in a base

year (Ganapati et al., 2020). As an alternative measure of lock-in, we also directly examine how

the prevailing prices of these fuels in plants’ entry year affect subsequent energy intensity. Many

industrial climate targets are set in energy intensity terms, rather than energy use or emissions, to

balance emissions reductions with economic growth (Stern and Jotzo, 2010), but we show that the

results are robust to estimation using alternative energy use definitions, different data subsamples,

and different energy data sources.

Motivated by this empirical evidence, the second part of the paper studies the causes of this

technology lock-in. We separately quantify the extent to which lock-in arises because plants that

enter at different energy prices use different production technologies and because capital adjustment

costs constrain their subsequent input choices. To do so, we estimate the parameters of plants’
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production technologies and the relative productivities of different manufacturing inputs at entry

and in subsequent years. We obtain our productivity estimates by applying models of production

functions with input-specific productivities that have been used to estimate labor productivity to

energy instead (Demirer, 2020; Doraszelski and Jaumandreu, 2018). The model allows us to quantify

the efficiency of plants’ energy inputs in each year of operations. Using these estimates, we assess

whether entry-year electricity prices lead to different productivity biases toward specific inputs and

whether any differences persist over time.

These analyses yield two primary results. First, technology lock-in is important in manufactur-

ing production and remains important throughout the lifetime of manufacturing plants. We show

that plants’ entry-year electricity prices are significant determinants of current energy intensity,

even conditional on current prices. While energy intensity declines when contemporaneous electric-

ity prices increase, we estimate an initial electricity price elasticity of approximately -0.25—about

one-third of the elasticity with respect to current electricity prices. The estimates are similar in sign,

magnitude, and precision when estimated using electricity intensity only or using estimates that al-

low for substitution between fuels. In addition, we show that the entry-year prices of fuel inputs into

electricity generation themselves have persistent effects on manufacturing energy intensity. Sepa-

rate analysis of the contributions of the prices of different raw fuels reveals that entry-year coal and

petroleum prices continue to be important determinants of energy use. Specifically, manufacturing

plants established when coal and petroleum were cheap are still consistently more energy-intensive.

The persistent effect of these fuel prices on manufacturing energy intensity is surprising because

electricity generation in the U.S. is much less reliant on these fuels today. These findings underscore

the long-run effects of development based on cheap fossil fuel energy and the emissions implications

of expansion of fossil fuel power plants: dirty capital investments undertaken in response to current

cheap coal prices around the world seem likely to lock in higher emissions levels in the future as

long as electricity generation continues to rely on fossil fuels.

We find limited heterogeneous effects of initial electricity prices by plant age, which suggests

that these entry-year prices remain important throughout a plant’s lifetime. The magnitude of our

entry-year price elasticity suggests that a carbon price corresponding to a 10% increase in a plant’s

entry-year electricity price would decrease its lifetime energy use by approximately 3%. These
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additional costs of delayed action on carbon pricing arise because entrants who choose production

technologies based on current prices choose dirtier technologies than they otherwise would, and can-

not subsequently fully adjust them. Of course, energy-inefficient plants may close if prices increase

substantially, which motivates using our estimates of plants’ production functions to directly assess

the extent to which plants can adjust their production processes over time.

The second main results show that persistent differences in the relative productivity of energy

inputs are able to explain much of the effect of initial electricity prices on subsequent manufacturing

energy use. We estimate that a 10% increase in entry-year electricity prices increases relative energy

productivity by approximately 3% in subsequent years. Conversely, we find no evidence that entry-

year electricity prices have long-term effects on total factor productivity. These results suggest

that when electricity prices are low, new manufacturing plants chose production technologies that

use energy inputs relatively less efficiently compared with their labor inputs, and this productivity

bias persists even if electricity prices change in the future. This evidence on the causes of lock-in

suggests that incentivizing the initial adoption of energy-efficient technologies may be at least as

important as subsidies to reduce capital adjustment costs later on.

This paper makes three primary contributions to existing literature. First, we provide the

first estimate of the importance of entry-year energy prices for industrial energy use in subsequent

years. In addition to quantifying this technology lock-in and showing how persistent it is, we

explain how it arises. Previous “efforts to characterize the types and causes of carbon lock-in,

or to quantitatively assess and evaluate its policy implications, have been limited and scattered

across a number of different disciplines” (Seto et al. (2016), p. 425).1 Our findings contribute to a

growing literature on how different initial conditions mediate transitions from dirty to clean energy

(i.e., path dependence). Several papers in this literature use macroeconomic dynamic models and

more aggregate data to study incentives to develop clean energy technologies, typically simulating

how changes in energy prices affect carbon emissions through innovation (Acemoglu et al., 2012;

Acemoglu et al., 2019; Atkeson and Kehoe, 1999; Fried, 2018; Hassler et al., 2012). Other work uses

microdata, particularly from the electricity sector, to show that initial regulatory structure and fuel

1In the climate context, the literature refers to technology lock-in as “the inertia of carbon emissions ... associated
with the technologies and infrastructure that indirectly or directly emit CO2”, which is distinct from carbon lock-in
arising from behavioral or institutional constraints more commonly studied by sociologists (Seto et al. (2016), p.427).
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mix choices are important determinants of subsequent fuel use (Cullen and Mansur, 2017; Knittel

et al., 2015; Meng, 2021) and to compare the energy intensity of new manufacturing plants, in their

entry year, to incumbents (Linn, 2008). Relative to this literature, our contribution is to show that

the effects of entry-year energy prices persist in years after entry and, indeed, throughout a plant’s

lifetime. In addition to estimating this entry-year price elasticity, we depart from these other studies

by estimating the contribution of initial productivity differences to creating this lock-in.

Second, this paper contributes to literature that models the responses of industrial energy use

and productivity to environmental regulation. Research using microdata to study industrial re-

sponses to environmental policy typically analyze the dynamics of one industry (e.g., cement or

electricity) over the long-run (Fowlie et al., 2016; Meng, 2021; Ryan, 2012; Clay et al., 2021) or

use static models to study different contemporaneous effects across many industries (Calel, 2020;

Colmer et al., 2021; Ganapati et al., 2020; Greenstone et al., 2012; Shapiro and Walker, 2018). Our

contribution is to bring these two literatures together to provide a new generalizable explanation for

why some of the dynamic responses arise. Using our estimates of the relative productivity of energy,

we show that a carbon price at entry or in later years reduces energy use by inducing improvements

in the productivity of energy inputs, consistent with directed technical change. Classic models of

capital investment emphasize that capital adjustment frictions may constrain changes in input mix,

but we identify that persistent productivity differences appear to be at least as important as this

more common explanation for lock-in (Atkeson and Kehoe, 1999; Pindyck and Rotemberg, 1983).

Finally, we provide a new microfoundation for the abatement cost function frequently used in

standard models of climate-economy interactions. These Integrated Assessment Models (IAMs) are

the basis for calculating the full social cost of carbon emissions and for evaluating national and

international climate policy recommendations. Despite their widespread use in regulatory analyses,

economists have criticized these models for allowing “a great deal of freedom in choosing functional

forms, parameter values, and other inputs” and for “lacking transparency in key underlying as-

sumptions, such as energy resource costs, constraints on technology take-up, and demand responses

to carbon pricing” (Pindyck, 2020, p.863; Gambhir et al., 2019, p.5). Standard models extrapo-

late future rates of decarbonization based on past decarbonization trends, which may inaccurately

represent attainable emissions reductions resulting from a new carbon price if lock-in is important.
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We provide a novel estimate of the response of industrial carbon emissions to emissions constraints

assumed in climate-economy models, which is “the most important calibration for policy purposes”

(Nordhaus and Boyer, 2000, p.44).

The rest of this paper proceeds as follows. Section 2 provides background on energy use in U.S.

manufacturing to contextualize the analysis. Section 3 presents a conceptual framework outlining

how technology lock-in might arise. Section 4 describes the data. Section 5 discusses our econometric

model for identifying technology lock-in and Section 6 presents our empirical evidence of it. Section

7 discusses the implications for climate change policy. Section 8 concludes.

2 Institutional Background

Manufacturing accounts for about one-quarter of total U.S. energy consumption and one-quarter of

total U.S. greenhouse gas emissions. Energy consumption in the industrial sector, which comprises

manufacturing, mining, construction, and agriculture, is increasing both in absolute terms and as

a share of total consumption, and this sector accounts for almost all of the predicted increase in

U.S. energy use in the next decade (EIA, 2015; EPA, 2021). Electricity comprises the majority of

manufacturing energy inputs; a subset of manufacturing plants use other sources of energy, such

diesel fuel, as direct inputs. On average during this study’s time period, electricity expenditures

account for approximately 75% of total expenditures on energy inputs and 95% of quantity of ther-

mal energy consumed (measured in British thermal units, or BTUs).2 Self-generation of electricity

on-site only accounts for 0.1% of electricity consumption. By contrast, manufacturing plants in de-

veloping countries such as India are typically more reliant on raw fuel inputs and on-site generation

of electricity (Allcott et al., 2016).

The amount and type of energy used depend on plants’ production processes. Primary uses

include powering production machinery and fueling boilers, while secondary uses include heating

and cooling, lighting, on-site transportation, and direct inputs into the finished product (Ganapati

et al., 2020). Improving the energy efficiency of many of these manufacturing processes requires

replacing equipment or machinery. For example, upgrading an energy-inefficient turbine involves

2These estimates, and our analysis, exclude feedstock materials, such as petroleum inputs into oil refining. Natural
gas is the most important energy input among these feedstock fuels.
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pausing or re-arranging operations to install an expensive replacement, and such capital adjustment

costs create the possibility for technology lock-in. If energy-inefficient machinery is installed when

energy prices are low, incurring these adjustment costs to replace it may only be worthwhile if

energy prices increase substantially. Other changes in plants’ energy use may occur independently

of capital adjustment, including changes in facility operations, such as heating and cooling, sched-

uled downtime, and improvements in the application of thermal resources (e.g., temperature and

duration) resulting from energy efficiency audits.3 Manufacturing energy policy typically does not

differentially regulate plants based on their entry date and is administered by a mix of federal, state,

and local governments that usually target specific industries or technologies. Landmark federal in-

dustrial environmental regulations, such as the Clean Air Act, more commonly target pollution that

is the by-product of energy use rather than targeting energy efficiency directly (NREL, 2009).

Though non-electricity energy sources account for a small portion of direct energy inputs, the

production of the electricity consumed by manufacturing involves important indirect use of raw

fuels.4 At the start of our sample in 1976, electric utilities in the U.S. generate electricity using coal

(40%), natural gas (12%), petroleum oil (21%), hydro (15%), and other renewable sources. Ap-

pendix Figure A.4 shows that the contribution of different fossil fuel sources to electricity generation

varies widely across U.S. states in 1976, while Appendix Figure A.2 shows that the contribution of

these different fuels has changed substantially at the state-level since then. The use of petroleum

in electricity generation has declined almost everywhere and it is barely used today. Coal use

has also declined, though less steeply than oil. Natural gas generation, by contrast, has increased

substantially since the fracking boom in the 2000s.

Local electricity rates depend on the national prices for prevailing fuel inputs, as well as distances

to procurement sources. Electric utilities have distinct regional markets that typically comprise a few

states and include inter-state trade, and in 2011 industrial users paid between 0.04 and 0.28 dollars

3The National Association of Manufacturers (NAM) specifies that 30% of energy cost savings in manufacturing
can be achieved without capital investment, with larger savings possible if capital investment occurs (NAM, 2014).

4We note that our analysis focuses on technology lock-in downstream in the manufacturing sector, rather than
upstream in the electricity sector, which is excluded from the Census manufacturing surveys. The electricity sector
may be subject to lock in as well due to the similar durable nature of capital investment in those plants, though we
anticipate that the production functions of electric utilities may look substantially different due to the larger role
that fuel switching plays for electric utilities (Meng, 2021).
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per kWh for electricity on average (EIA, 2020).5 Policy discussions emphasize raising industrial

energy prices to meet emissions targets, while the discourse surrounding residential electricity prices

is more mixed due to the presence of already high fixed charges that are largely absent in industry

(Borenstein and Bushnell, 2022; Hawkins-Pierot and Wagner, 2024). Figure 2 shows that the

average electricity price paid by the industrial sector varies widely over our sample time period,

generally trending downward until the late 1990s before increasing back to its 1976 level. These

changes in electricity prices track the trends in the prices of raw fuels used to generate electricity,

shown in Appendix Figure A.3. Since 1976, petroleum prices have tripled, while coal and natural

gas prices have risen less steeply over this same time period. In what follows, we exploit variation

in the national prices of these raw fuels to construct instruments for electricity prices.

3 Conceptual Framework

The goal of this section is to illustrate how technology lock-in might arise in the manufacturing

sector. We use a stylized model of plant entry, exit, and capital investment (Atkeson and Kehoe,

1999; Pindyck and Rotemberg, 1983), to which we introduce the importance of entry-year input

productivities for energy use. If technology lock-in is important, then plants that enter at lower

energy prices will be persistently more energy-intensive today. In this section, we use a simple two-

period model of myopic manufacturing plants to show how lock-in can arise through two channels:

selection on productivity and capital adjustment costs. Appendix A shows that the same intuitions

carry over to a richer multi-period model under a range of assumptions about plant expectations

of future energy prices. Appendix A also derives the comparative statics predictions that underlie

the simulation results that we discuss here.

5Appendix Figure A.4 and Appendix Figure A.2 include differences in generation sources from any trade across
network exchanges.
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3.1 A Model of Lock-In

For illustration, consider a model where a plant has a constant elasticity of substitution (CES)

production technology:

Y (K,L,E;ωH , ωE) = ωH
(
Kρ + Lρ + (ωEE)ρ

) ν
ρ (1)

where K, L, and E are the quantities of capital, labor and energy inputs, respectively, σ = 1
1−ρ

is

the elasticity of substitution between energy and capital, ν ∈ (0, 1] is a returns to scale parameter,

ωH is Hicks-neutral total factor productivity, and ωE captures the productivity of energy relative to

labor.6 Modelling ωE will allow us to capture differences in initial design choices and improvements

to the productivity of energy inputs from energy audits or maintenance, for example (Ryan, 2018).

Labor and energy are assumed to be fully flexible static inputs, chosen optimally in each period.

As detailed below, an incumbent plant’s level of capital is only partially flexible due to non-linear

adjustment costs. Here, the relative productivity of energy, ωE, is fixed at entry and is fully locked

in.7

A potential entrant i draws productivity levels ωH
i and ωE

i and chooses capital, labor, and energy

inputs to maximize profits:

max
K,L,E

π(K,L,E;ωH
i , ω

E
i ) = pY (K,L,E;ωH

i , ω
E
i )− rK − wL− pEE

The potential entrant chooses to enter if profits exceed the fixed costs of entry, that is if:

π∗(p, w, r, pE;ω
H
i , ω

E
i ) = pY (K∗, L∗, E∗)− wL∗ − rK∗ − pEE∗ ≥ F

In this equation, L∗ and E∗ solve the static profit maximization problem and F is the fixed entry

6We estimate a CES production technology rather than the more common Cobb-Douglas or translog functions to
allow complementarity between inputs and factor-specific productivities. Neither Cobb-Douglas or translog functional
forms admit both of these characteristics, which are both needed to capture the two lock-in channels that we discuss.
If ρ = 0, CES is equivalent to the Cobb-Douglas specification. In this case, input expenditure shares are fixed and
capital stocks do not affect the optimal energy input.

7In the empirical specification, we estimate a richer model where we allow total factor and energy-specific produc-
tivities to evolve over time following AR(1) processes and prices to be fully flexible. We discuss estimation details in
Section 5.2.
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cost. We assume that the capital stock K∗ is fully flexible on entry, subject to a linear capital rental

rate r. To simplify notation and isolate the role of changes in the relative price of energy pE in this

example, we set the price of output p, the wage w, and the rental rate of capital r to be equal to

one.8

The first channel through which lock-in arises is the selection effect on the productivity of

plants that choose to enter in the first period. All else equal, higher energy productivity increases

plants’ profitability and, by extension, the likelihood that a plant chooses to enter. This induces

selection: if energy is cheap, it is profitable for plants with low energy productivity to enter. As

we show in Appendix A, when complementarity between inputs is sufficiently strong, plants with

lower energy productivity will use more energy per unit of output. The cutoff energy productivity

level determines the distribution of energy productivity ωE
i for plants that entered in a period with

energy price pE. The cohort-average energy productivity is increasing in the initial energy price pE

because the cutoff is increasing in pE. If plants’ energy productivity is persistent, entry-year energy

prices will be important determinants of their energy intensity in the future.

Capital adjustment costs provide the second channel through which lock-in arises. Plants that

enter earn their first period profits and continue to the second stage with their current capital stock,

K. At the end of period one, plants observe prices in the next period and choose their capital in

the next period, K ′, to solve:

max
K′


π∗(K ′; pE

′
, ωE

i )− γ0 − r(K ′ −K)− γ1(K
′ −K)2 if K ′ ̸= K

π∗(K; pE
′
, ωE

i ) otherwise

Here, π∗(K; pE, ωE) is the maximum profit if capital is fixed at K, given prices and productivity. In

addition to the cost of capital r, γ0 and γ1 are fixed and convex adjustment costs, respectively. The

fixed cost of capital adjustment, γ0, implies that it may not be profitable for plants to re-optimize

their capital in response to small energy price changes. The convex adjustment cost, γ1, implies that

while plants may invest in response to larger prices changes, they will only partially close the gap

relative to frictionless entrants because large capital investments are increasingly more costly than

8Appendix A.2 discusses the model calibration in greater detail.
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small ones. If capital and energy are complementary in the plant’s production function, incomplete

adjustment of capital stocks due to these additional costs attenuates the response of energy intensity

to changes in energy prices, leading to lock-in.

Incumbent plants will shut down if their scrap value exceeds their profit: π∗ < S. As with entry,

there is a cutoff value such that, for a given energy price pE, plants with energy productivity below

this value will exit. As the least efficient plants exit, cohort-average energy productivity will rise.

However, if scrap values are lower than entry costs, then the exit cutoff energy productivity will

be below the entry cutoff and incumbents will, on average, have higher energy intensity than new

entrants.

Figure 1 plots simulated current energy intensity as a function of energy prices at entry in

this model. The three downward-sloping lines measure the energy intensity of incumbent plants

relative to the energy intensity of entrants under different assumptions about the structure of capital

adjustment costs. The x-axis plots the price of energy in the first period when incumbents entered,

relative to today’s price. Conditional on current energy prices, entrants today don’t take into

account energy prices in the past, and so energy intensity of new entrants is flat and we normalize

it to be one. The downward slope of the energy intensity of incumbents indicates lock-in: plants

that opened when energy was cheap are persistently more energy-intensive today.

This lock-in arises under all three capital adjustment cost scenarios. First, the blue, long-dashed

line plots the magnitude of lock-in for plants that cannot adjust their capital stock. The only margins

of adjustments are changing energy and labor inputs or exiting. This represents an extreme case

of lock-in. Second, the orange, short-dashed line plots lock-in for plants that can partially adjust

capital, subject to both fixed and convex capital adjustment costs. Third, the green, solid line

isolates the energy productivity effect by setting γ0 = γ1 = 0, shutting down capital adjustment

frictions. Even without fixed or convex capital adjustment costs in this third scenario, the average

plant from a low energy price vintage will be more energy-intensive than the average entrant because

lower productivity plants enter at lower prices. At higher energy prices, it is no longer profitable

to open a new energy-intensive plant, but existing plants may continue to operate. In this case,

even with costless adjustment of capital, plants are still locked in to their productivity, which is

dependent on entry-year energy prices due to the fixed entry costs that induce selection.
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Appendix Figure A.1 shows that the same insights regarding the possibility of lock-in and its

causes carry over to a multi-period framework and under alternative assumptions about plants’

beliefs about future energy prices. In particular, we show that lock-in arises even if entrants know

energy prices will increase in the future. Panel A shows energy intensity of incumbents relative to

entrants assuming that all future energy price changes are known at entry. When plants perfectly

foresee future prices, the magnitude of lock-in depends on the discount rate. Entrants with a

higher discount rate β will anticipate capital adjustment frictions and choose their initial input

mix to better match future prices. However, discounting of future profits means that incumbents

who entered at low energy prices are still more energy-intensive today than current entrants. This

pattern is even more pronounced if we assume all energy price changes are unanticipated (Panel

B). In this opposite extreme scenario, there is a larger difference between the energy intensity of

incumbents who entered at high and low energy prices (i.e., a steeper slope of energy intensity), for

moderate price changes. While Appendix Tables A.10 and A.11 suggest that plants’ beliefs about

future energy prices are largely based on energy prices today, under both sets of assumptions, large

price changes drive the least productive plants from the market, reducing average energy intensity

of surviving plants. We discuss the simulation of this dynamic multi-period model in greater detail

in Appendix A.2. Appendix A.2 also discusses in greater detail the general conditions under which

lock-in of a plant’s production function arises.

3.2 From Theory to Data

In the remainder of the paper, we exploit exogenous variation in initial and current electricity prices

to measure the persistent effect of electricity prices at entry on energy intensity and productivity

throughout the lifetime of manufacturing plants. Technology lock-in is important if plants fac-

ing the same current electricity prices have systematically higher energy intensity if they entered

when electricity was less expensive. This overall estimate of lock-in is analogous to the orange,

short-dashed line in Figure 1, which captures lock-in due to both capital adjustment frictions and

persistent energy-specific productivity.

The regressions of energy intensity on electricity prices cannot, by themselves, distinguish be-
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tween these two sources of lock-in. To do so, we estimate a structural production function for each

industry. This analysis allows us, first, to establish that capital adjustment costs could contribute

to lock-in by estimating the substitution parameter between energy and capital: complementarity

in production between capital and energy is a necessary condition for capital adjustment costs to

create lock-in.9 Second, it allows us to recover annual energy-specific productivity for each plant to

distinguish between the two competing explanations for lock-in. The productivity estimates allow

us to assess the contribution of energy productivity differences to creating lock-in, which is captured

by the green, solid line in Figure 1 that shuts off capital adjustment costs. The contribution of cap-

ital adjustment costs is the residual distance between the total lock-in effect and the productivity

effect (i.e., the distance between the orange, short-dashed line and the green, solid line in Figure 1).

By comparing the total lock-in effect to lock-in arising with selection on productivity but without

capital adjustment costs, we quantify the relative importance of the two lock-in mechanisms.

4 Data

We draw on restricted microdata from the U.S. Census Bureau on manufacturing inputs and outputs

and on energy data from publicly available government sources. Additional data details are in

Appendix B.

4.1 Manufacturing Inputs and Outputs

Our primary data sources are administrative records on annual plant-level inputs and outputs from

the Annual Survey of Manufacturing (ASM) and the Census of Manufactures (CMF) from the

U.S. Census Bureau for the years 1976 to 2011. The CMF is conducted in years ending with 2 or

7 and surveys all manufacturing plants in the United States. The ASM annually surveys plants

in the years between censuses and comprises a nationally representative sample of approximately

50,000 plants per year. We calculate plant-level annual average electricity price as reported total

9Stylized facts in the literature suggest that both fixed and convex capital adjustment costs are important (Khan
and Thomas, 2008). Specifically, capital investment is characterized by infrequent spikes interspersed with periods
of no or minimal investment. Investment is also slow to respond to large changes in economic fundamentals.
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electricity expenditure divided by electricity purchased as reported in the surveys.10 We measure

plants’ annual capital investment using total capital outlays, materials, electricity, and raw fuels

inputs using reported expenditures, and labor inputs using worker hours, available in both the ASM

and CMF.11 The CMF also contains information on plants’ capital stocks, measured as reported

book values of equipment and machinery.12

We supplement these data with the Manufacturing Energy Consumption Survey (MECS) and

the ASM Fuel Trailers. The MECS and ASM Fuel Trailers are U.S. Census Bureau surveys that

include a probabilistic sample of about 15,000 manufacturing plants, for the years 1976-1981 for the

ASM Fuel Trailers and for every three years between 1985 and 1994 and every four years thereafter

for the MECS. These more detailed energy surveys provide breakdowns of expenditure on and

quantity consumed of raw fuels (e.g., diesel fuel) that are used in smaller amounts and that are

therefore not available from the ASM and CMF, which report detailed quantity and expenditure

information on electricity but not other energy sources.

These supplementary surveys allow us to calculate three measures of energy intensity of pro-

duction: electricity consumed per dollar of revenue, carbon dioxide (CO2) emissions produced per

dollar of revenue, and British thermal units (BTU) of energy consumed per dollar of revenue. CO2

intensity and BTU intensity incorporate the use of all energy sources in a way that electricity inten-

sity does not, therefore capturing any fuel-switching that might arise due to changes in electricity

prices. We calculate plant-level CO2 emissions and BTU consumption from electricity by multiply-

ing by state-specific conversion factors from the U.S. Energy Information Administration (EIA) and

from the Environmental Protection Agency (EPA), which incorporate the carbon intensity of each

state’s electricity grid. To obtain CO2 emissions and BTU consumption from other energy sources,

we calculate annual industry-average estimates of CO2 and BTU per dollar of energy expenditure

from the more intermittently available supplemental surveys and multiply by plant-level energy

expenditures on other fuels (Lyubich et al., 2018). We calculate the industry-average estimates of

10We verify the reliability of our calculated average electricity prices by comparing against utilities’ posted industrial
rate schedules, available from the OpenEI rate database, and against state-level electricity prices reported by the
Energy Information Administration.

11We calculate worker hours as plants’ reported production-worker hours times the ratio of total payroll to payroll
for production workers (Baily et al., 1992; Ganapati et al., 2020).

12Appendix C describes how we calculate annual capital stocks implied by ASM investment and depreciation.
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CO2 and BTU per dollar of energy expenditure by multiplying energy quantities by fuel-specific

conversion factors from the EIA and the EPA.

Our final source of manufacturing data is the Longitudinal Business Database (LBD). This

census provides information on all plants’ entry year, which we link to the other data sets at the

plant level. We match plants to their own initial electricity prices if the plant was surveyed in its

entry year. If a plant is not observed in its entry year, we impute its initial electricity price using

the average of other contemporaneous entrants in its state and industry.13 A short-coming of the

LBD is that any plant that began operations before the start of the survey (i.e., 1975) is recorded

as opening in 1975; we therefore restrict the sample to plants that enter after 1975, for which we

observe their entry year. Appendix B describes additional restrictions imposed during the cleaning

of the data, such as excluding observations with missing or negative input values. The primary

analysis sample includes approximately 1,294,000 plant-year observations. Throughout, we deflate

all monetary values to 2011 dollars using the input- and industry-specific price indices available from

the National Bureau of Economic Research-Census of Economic Studies (NBER-CES) Productivity

Database.

Appendix Table A.1 presents summary averages on manufacturing inputs and outputs sepa-

rately for all industries and excluding industries which use energy sources other than electricity

in important ways (i.e., including only industries for which electricity accounts for at least 70% of

total energy expenditures). Overall, plants consume approximately 0.2 kWh of electricity, 0.1 kg

of CO2, and 0.001 million BTU per dollar of revenue, with about 10% higher energy usage in the

electricity-intensive subsample. All of these data are at the plant-level, rather than the firm-level,

reflecting the fact that operational and investment decisions are made separately for individual

establishments.

13We focus on electricity prices as opposed to composite indices of electricity and any other energy sources used
for two reasons. First, plant-level prices of these inputs are available only approximately every four years, for a
small subset of our full sample. As a result, we almost never observe entry-year prices for energy sources other than
electricity, which requires that a plant is surveyed in the MECS or ASM Fuel Trailers in its entry year. Second,
electricity captures most energy used, as discussed above.
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4.2 State Energy Use and Fuel Prices

The data on state energy input prices and fuel shares in the electricity sector are from the EIA State

Energy Data System (SEDS) (EIA, 2020). We use these data to calculate average national prices for

coal, natural gas, and petroleum as well as the share of each of these fuels used to generate electricity

in each state. We also draw on state-level measures of electricity prices to assess the validity of our

calculated, plant-level ones. We deflate prices using the average of the energy deflators from the

NBER-CES Database.

5 Econometric Model

5.1 Instrumental Variables Analysis

To quantify technology lock-in and its causes, we assess whether the electricity prices that manu-

facturing plants pay in their entry year are important determinants of subsequent energy usage and

relative energy productivity. We estimate the following equation:

yit = β0pit0 + β1pit + αjs + τjtt0 + ϵit (2)

In this equation, yit is an energy outcome for plant i in year t (i.e., the log of energy use per dollar

of revenue E
Rit

or the log of relative energy productivity ωE
it ), pit0 is the log of the average price of

electricity in the year t0 that plant i enters the market, and pit is the log of the average price of

electricity paid by plant i in year t. Industry × state fixed effects αjs control for time-invariant

characteristics common to six-digit North American Industry Classification System (NAICS) indus-

try j in a given state s, such as geography, industry × year × entry year fixed effects τjtt0 control

for time-variant changes that affect all plants in a given industry that entered the market in the

same year, such as availability of new technology, and ϵit is the error term. We cluster standard

errors at the state-level throughout and we weight regressions using the Census sampling weights

to obtain estimates that are representative of the entire market.

The main parameter of interest in equation (2) is β0, which measures the effect of initial elec-
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tricity prices on current energy intensity or current (relative) energy productivity. The second

parameter of interest, β1, measures the effect of contemporaneous electricity prices on these out-

comes. If technology lock-in is important, we expect initial electricity prices to affect current energy

usage E
Rit

even conditional on current electricity prices (i.e., β0 < 0 in models where energy intensity

is the outcome variable). In addition, if lock-in arises through persistent differences in the relative

productivity of inputs, then we also expect higher initial electricity prices to lead to higher pro-

ductivity of current energy inputs relative to labor inputs ωE
it (i.e., β0 > 0 in models where relative

energy productivity is the outcome variable).

Even conditional on the fixed effects, it is possible that omitted variables or measurement error

could introduce bias into the OLS estimation of the price elasticities β0 and β1. For example,

textbook reverse causality would arise if unobserved shocks to plants’ aggregate energy demand

(e.g., new demand for certain products) also affect electricity prices, leading to estimates of the price

elasticities that are biased upward (i.e., less negative). In addition, plants’ entry-year electricity

prices are, in some cases, measured with error: if a plant is not surveyed in its entry year, we

approximate its initial electricity price using the average of other entrants in the same state, industry,

and year. As a result, the effect of entry-year prices may be biased toward zero.

To address these concerns, we construct instrumental variables Zst to isolate changes in plants’

electricity prices that are uncorrelated with other shocks to energy intensity. This Bartik-style shift-

share approach instruments downstream electricity prices with changes in the upstream prices of

inputs into electricity. More specifically, we isolate exogenous variation in electricity prices using the

interaction of historical state electricity generation shares and current national fuel prices (Ganapati

et al., 2020). These instruments are:

Zst = [ρ−s,f,t × σs,f,1976] (3)

where σs,f,1976 is the share of total fuel expenditure of each fuel in electricity generation in state s in

1976, for each fuel f ∈ {coal, natural gas, petroleum oil}, and ρ−s,t,f is the mean of all other states’

log fuel price in year t. The intuition underlying these instruments is that a plant’s electricity

price will be more strongly affected by changes in national fuel prices if the electricity sector in
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its state is more dependent on this fuel source.14 Our elasticities therefore identify the effects of

changes in electricity prices that arise due to changes in the underlying prices of fossil fuel inputs

into electricity generation. Appendix Figure A.3 shows that there is significant variation in the

prices of these fuels between 1976 and 2011, while Appendix Figure A.4 shows that changes in

these prices will differentially affect some states more than others. We find that the instruments

are strong predictors of electricity prices: Table 1 shows that these weighted entry-year and current

fuel prices are important determinants of initial and current electricity prices, respectively.15

The identifying assumption is that plants’ differential exposure to changes in national fuel prices

are uncorrelated with other production shocks, conditional on the variables in the model:

E[Zst × ϵit|αjs, τjtt0 ] = 0 (4)

For example, the inclusion of industry × year × entry year fixed effects controls for annual macroe-

conomic conditions that could affect both plant’s production choices and national fuel prices.16 The

identifying assumption would be violated if states’ fuel generation shares in 1976, which determine

exposure to national fuel prices changes, are correlated with other factors that affect plants’ pro-

duction decisions. The availability of skilled labor, for instance, is one such factor that could be

correlated with shocks to plants’ labor demand. Since our instrument is an exposure design, we

assess the validity of the identifying assumption by examining whether state fuel electricity genera-

tion shares are correlated with available state characteristics related to input use that could suggest

other channels through which the instruments could affect the outcomes of interest (Goldsmith-

Pinkham et al., 2020). Reassuringly, Appendix Table A.4 shows no evidence of significant system-

atic relationships between state fuel shares and these characteristics, which supports the identifying

assumption.17 Appendix D discusses this indirect test of instrumental exogeneity in greater detail.

14We focus on electricity generation shares from fossil fuels that are traded in commodity markets, as opposed to
fuels without clearly defined market prices (e.g., hydro and nuclear generation).

15In practice, electricity in the U.S. is distributed within electric power markets that correspond roughly to groups
of states. As a result, variation in fuel generation shares is smaller than suggested by these maps due to intra-regional
trade. Despite this, we still find that our state-level instruments are strongly predictive of plant electricity prices.

16Specifically, industry × year × entry year fixed effects control for e.g., annual shocks that are common to all
cement plants that opened in 1990. The geographic clustering of entrants in specific industries reduces concern
about exposure to state × year variation since our instrument precludes the inclusion of state × year fixed effects.
Appendix Tables A.7 and A.8 shows that the results are robust to the inclusion of state × year trends.

17Data on state characteristics are from the Federal Reserve Bank of St Louis database (FRED) and the 5 percent
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In equation (2), both current electricity prices pit and initial electricity prices pit0 are potentially

endogenous. We therefore include instruments Zst based on the contemporaneous fuel prices mea-

sured at t as instruments for log current prices pit and Zst0 based on the fuel prices in the year t0

when the plant opened as instruments for log initial prices pit0 . Specifically, the first stage regression

equation for current prices pit is:

pit = γ1Z
coal
−s,t + γ2Z

gas
−s,t + γ3Z

oil
−s,t + γ4Z

coal
−s,t0

+ γ5Z
gas
−s,t0 + γ6Z

oil
−s,t0

+ αjs + τjtt0 + ψit (5)

and the first stage regression equation for initial prices replaces pit0 as the outcome variable.

In some specifications, we also examine whether the importance of initial prices depends on the

plant’s age. To do so, we extend equation (2) by interacting the log of initial electricity prices with

the age of the plant in years:

yit = β0pit0 + β1pit + β2pit0 × ageit + αjs + τjtt0 + ϵit (6)

In these heterogeneous effects models, we also include the interaction of the shift-share instruments

Zst0 with the variable age in the first stage.

5.2 Production Function Estimation

To separately recover plants’ total factor and energy-augmenting productivity shocks, we estimate

a model of plants’ production decisions (Ackerberg et al., 2015; Olley and Pakes, 1996). Commonly

used models of manufacturing production functions, notably Cobb-Douglas and translog, do not

allow for complementarity between inputs and factor-specific productivity shocks. Since these

characteristics are necessary for lock-in to arise, studying the causes of the persistent effects of

entry-year energy prices requires extending more general models of production to include energy

(Demirer, 2020; Doraszelski and Jaumandreu, 2018).

As discussed in Section 3, we use a constant elasticity of substitution (CES) production function,

sample of the Integrated Public Use Microdata Series (IPUMS) of US Census Data. We examine the correlation of
fuel shares with state characteristics in 1980, rather than in 1976 when our Bartik weights are measured, because
1980 is the closest year for which American Community Survey data from IPUMS are available.
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which is sufficiently rich to allow for complementarity between inputs and factor-specific produc-

tivity while remaining empirically tractable. Plant i produces revenue in year t according to:

Yit = exp(ωH
it )
(
βKK

σ−1
σ

it + L
σ−1
σ

it + (exp(ωE
it )Eit)

σ−1
σ

) νσ
σ−1

× exp(ϵit)

where σ and ν are respectively the elasticity of substitution and returns to scale, ωH
it is the Hicks-

neutral total factor productivity, and βK and ωE
it are the productivity of capital and energy inputs

relative to labor inputs, respectively.18 The two productivity shocks ωH
it and ωE

it are known by the

plant when it chooses inputs, whereas ϵit represents unanticipated randomness in production.

Estimating equations for the productivity shocks are based on the first-order conditions of the

plant’s profit maximization problem for their static inputs (i.e., labor Lit and energy Eit). We follow

the literature in assuming that both labor and energy (i.e., materials) are static inputs that are

not subject to adjustment frictions.19 In each period, plants choose labor and energy, given their

capital stock Kit, productivity draws, and prices to maximize their profits:

max
L,E

pY Y (L,E;Kit, ω
H
it , ω

E
it )− witL− pEitE

where wit and p
E
it are the prices of labor and electricity, respectively. We obtain an expression for

energy-augmenting productivity shocks ωE
it by taking the log of the ratio of the first-order conditions

for the choices of energy and labor:

lit − eit = −σ(wit − pEit) + (1− σ)ωE
it (7)

Inputs and prices in equation (7) are observed, and so given the elasticity of substitution σ, we

can estimate ωE
it . Intuitively, if labor and energy are complementary inputs (i.e. σ < 1), then

conditional on prices a higher ratio of labor to energy inputs implies a higher relative productivity

18Note that the levels of factor-specific productivities are not separately identifiable from total factor productivity,
so without loss of generality we normalize labor productivity to one and express energy and capital productivities
relative to labor productivity.

19If electricity is not a static input (due to, for example, hedging behavior against future price increases), then
beliefs about future electricity prices would induce plants to lock in electricity contracts today. Our treatment of
electricity here mirrors the treatment of labor as a static input despite practical concerns around long-term contracts,
severance pay, etc (Ackerberg et al., 2015; Olley and Pakes, 1996).
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of energy. With these estimates of ωE
it , we can then recover total factor productivity, ωH

it , from the

first-order condition for energy, given the values for the rest of the production function parameters.

We recover the production function parameters using standard estimation methods based on

the assumption of AR(1) evolution of the productivity shocks, as in Ackerberg et al. (2015).20

The timing of plants’ input decisions and the Markov structure for the productivity shocks imply

that all past input choices are uncorrelated with the productivity innovations, allowing us to use

lagged (log) inputs, lit−1, eit−1, and kit−1, and lagged wage and electricity prices, wit−1 and pEit−1 as

instruments in the moment conditions. For each four-digit NAICS industry, we obtain parameter

estimates θ̃ = (σ, ν, βK) and standard errors using the two-step generalized method of moments

(GMM) estimator (Hansen, 1982). Appendix E provides a detailed discussion of the estimation

procedure.

In what follows, we focus on our estimated relative energy productivity and total factor pro-

ductivity measures and their relationship with initial and current energy prices. Overall, we find

that our estimates of the production function parameters have reasonable signs and magnitudes

and are comparable to estimates in the literature using CES or nested CES functional forms, with

or without energy as a separate input (e.g., Doraszelski and Jaumandreu, 2018; Hassler et al., 2012;

Ryan, 2012). Appendix Table A.5 shows that we find that capital, labor, and energy are strongly

complementary; our average estimate of σ is around 0.25.21 Our estimate of the returns to scale

parameter ν, which is around 0.65, is also consistent with estimates from the literature. Our ν

estimates are smaller than Doraszelski and Jaumandreu (2018)’s estimates of around 0.9 in Spanish

data, which can be explained by the fact that our returns to scale parameter combines the effects of

returns to scale and downward-sloping demand that are separately estimated in this other paper.22

Our productivity estimates do not require us to assume perfect competition in output markets, but

20Physical productivity can be recovered as a rescaling of revenue productivity given information on prices and
market structure (Allcott et al., 2016). Plant-level microdata on physical outputs are limited in most commonly used
producer survey data (Allcott et al., 2016; Greenstone et al., 2012; Ryan, 2018).

21There are relatively few estimates of CES production function parameters involving energy inputs. Our results
are comparable to Hassler et al. (2012) and Ryan (2012), who also estimate a strongly complementary relationship
between energy and other inputs.

22Doraszelski and Jaumandreu (2018) also explicitly model research and development using data that is unavailable
in the U.S. and which precludes our modelling of this margin of plant decisions, though Ganapati et al. (2020)
show that endogenizing productivity does not appreciably change Cobb-Douglas estimates of U.S. manufacturing
productivity.
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implicitly assume price-taking behavior in input markets. If manufacturing plants were to have

market power in electricity markets, then energy productivity would be biased downward—as elec-

tricity use increases, prices would increase—but the assumption of perfect competition on the input

side is standard and seems plausible given the large number of manufacturing plants in the U.S.

6 Results

6.1 Energy Intensity

First, Table 1 shows that weighted national fuel prices are strongly predictive of both entry-year and

current electricity prices, respectively in Columns 1 and 2. These results form a strong first stage

for the instrumental variables analyses. The parameters are the effects of a 1% change in fuel prices

on electricity prices if a state generated 100% of its electricity from this fuel source. Coal prices

are the most important determinant of entry-year electricity prices, and are approximately four to

five times as important as natural gas and petroleum prices (Column 1). If a state generated its

electricity entirely from coal in 1976, then a 10% increase in coal prices in a plant’s entry year would

increase its entry-year electricity price by approximately 2.2%. In practice, the state average 1976

coal share is approximately 0.40, and so a 10% increase in coal prices increases electricity prices by

0.9%.23 Reassuringly, fuel prices in the future are not predictive of entry-year electricity prices in

the past, which provides some placebo evidence that it is energy prices in a plant’s entry year that

are important. Initial fuel prices have small effects on current electricity prices, possibly reflecting

some stickiness in electricity prices paid by plants, but current fuel prices become significantly

more important (Column 2). Contemporaneous natural gas prices have the largest effect on current

electricity prices, reflecting the shift toward natural gas electricity generation in recent years shown

in Appendix Figure A.5. Ganapati et al. (2020), who examine the effects of contemporaneous fuel

prices on manufacturing marginal costs, similarly highlight the importance of natural gas as a recent

determinant of manufacturing costs.

Table 2 presents our first evidence of technology lock-in. This table shows that both initial and

23Appendix Table A.4 shows the 1976 state fuel generation shares that can be used to adjust the parameters in
Table 1 to interpret them as elasticities.
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current fuel prices have significant effects on current energy intensity. We consider effects on four

different measures of energy intensity. Column 1 measures energy intensity using electricity con-

sumed (in kWh) per dollar of revenue, which accounts for most energy use by manufacturing plants.

Column 2 focuses on this same measure of energy intensity in “electricity-intensive industries”, ex-

cluding industries that spend more than 30% of total energy expenditures on other sources of energy

as direct inputs. This subsample focuses on plants that use electricity as an energy input almost

exclusively, with limited ability to substitute to other energy sources in response to electricity price

changes.24 Columns 3 and 4 use kg CO2 and million BTU per dollar revenue as measures of total

energy intensity, respectively. These last two measures include energy from other energy sources

and therefore account for changes in energy intensity due to any substitution between electricity and

other fuel sources. Figure 3.a shows that the time trends in energy intensity are highly correlated

across these three measures, and that aggregate electricity intensity has declined by approximately

30% since 1976 by all three metrics.25

We find consistent results across each of these measures of energy intensity and in the “electricity-

intensive” industries subsample. In all models in Table 2, the current natural gas price has a

larger impact on current energy intensity than contemporaneous coal or petroleum prices, which is

indicative of the recent shift toward natural gas electricity generation after the fracking boom in

the 2000s.26 The precisely estimated zero effect of current petroleum oil prices is consistent with

the limited use of petroleum in generating electricity today, shown in Appendix Figure A.2.27 By

contrast, despite the declining roles of petroleum and coal in electricity generation, entry-year coal

and petroleum prices have persistent effects on energy intensity. This is lock-in: the prices of these

fossil fuels continue to affect plants’ energy intensity even after the economy has transitioned to

24Both analyses continue to exclude feedstock fuels in industries such as oil refining.
25Consistent with our results, Linn (2008) and Levinson (2021) document declining energy intensity of manufac-

turing production over approximately half of our time period. Huntington (2010) and Metcalf (2008) additionally
find similar trends using sector- and state-level data, respectively. The CO2 and BTU intensity measures in Figure
3.a are more highly variable since these are surveyed less frequently and on fewer plants than the electricity measures.
In Appendix F, we show that including or excluding periods covered by the different energy surveys (i.e., MECS and
ASM Fuels Trailers) and imputed values in intervening years doesn’t change the results of our analysis below.

26Appendix Table A.1 shows that the average current year is 1997 while the average entry year is 1988, which
suggests that fracking-induced price changes are more heavily concentrated in current prices. Appendix Figure A.2
shows the rise in importance of natural gas over time.

27Comparing Appendix Figures A.2 and A.5 shows that most states generating electricity using petroleum oil in
1976 substantially reduce their use of it by 2011.
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other fuel sources. The elasticity of energy intensity with respect to entry-year coal prices is more

than twice the current natural gas price elasticity even before accounting for the higher 1976 coal

generation share. These results underscore that the continued expansion of coal power capacity,

particularly in developing countries, could lead to higher manufacturing energy intensity even if

these economies eventually transition to cleaner fuel sources.

This evidence of lock-in is also apparent in both the OLS and instrumental variables analyses

of the effects of initial and current electricity prices on energy intensity (Table 3, Panels A and B

respectively). In both analyses and across our four energy intensity measures, entry-year electricity

prices have significant effects on energy intensity in subsequent years. In our preferred IV specifi-

cations, the initial price elasticity is between -0.14 and -0.35, which is approximately 25% of the

elasticity with respect to current electricity prices. As a result, failing to price carbon in plants’ en-

try year leaves an average of 25% of the energy-reduction benefits on the table. The price effects on

energy intensity measures that include and exclude other fuel sources (i.e., BTU and CO2 intensity)

are similar in sign, magnitude, and precision, plausibly because electricity comprises approximately

95% of thermal energy consumed on average and so fuel-switching in response to electricity price

changes is relatively limited. We highlight that the inclusion of industry × year × entry year fixed

effects controls for plant vintage within each industry, so that the estimates comprise the effect of

changes in the price of electricity for plants with the same technologies available to them when they

entered.

The initial electricity price elasticity is larger in magnitude in the IV models than in the OLS

models, consistent with measurement error in the entry-year electricity prices that are annual av-

erages across entrants in each industry and state if a plant is not surveyed in its entry year. Such

measurement error biases the estimates against finding evidence that initial electricity prices are

persistent. The elasticity of energy intensity with respect to current electricity prices is about -0.80

(i.e., relatively elastic), suggesting that plants do respond to current electricity price changes in the

presence of lock-in. This estimate is more similar in sign, magnitude, and precision in both the OLS

and IV models; current electricity prices are always measured at the plant level and are therefore

less likely to be subject to measurement error in the OLS estimates.28 Appendix Table A.7 shows

28Our estimated elasticity of energy intensity with respect to current electricity prices is somewhat larger than
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that both our initial and current price elasticities are robust to estimation using different covariates,

data subsamples, and electricity price data sources, including using electricity prices from SEDS

rather than our plant-level measures. We discuss these other estimates in Appendix F. Since entry

decisions may be made before a plant enters and investment decisions may also depend on prices in

years after entry, we also show in Appendix Table A.10 that we obtain statistically indistinguishable

estimates of the effects of electricity prices on energy intensity if we use the electricity price in the

year before a plant enters (Panel A) and if we control for the mean of electricity prices in between

the year of entry and the current year (Panel C).

We find limited evidence that the importance of entry-year electricity prices declines as plants

age, suggesting that lock-in is persistent (Table 6, Columns 1-3). The effect of age is not statistically

significant and the point estimate is small for most energy intensity measures; we can rule out

declines in the elasticity in excess of 10% per year with 95% confidence. At the point estimates, it

would take roughly 25 years for the effect of entry-year prices to fade, which Appendix Table A.3

shows is 10 years longer than the average plant lifetime. Any decline in the average importance

of entry-year prices could be due to plants’ gradual investments in energy efficiency improvements

or due to changes in entry and exit; the IV estimates combine both of these effects for surviving

plants. Since the most locked in plants are the ones that are mostly likely to exit in response to

energy price changes, our estimates on surviving plants here provide an upper bound on plants’

ability to respond to price changes and mitigate lock-in without ceasing operations. We turn now

to assess the effects of initial electricity prices on the productivity of plants’ inputs to understand

the extent to which capital adjustment costs and underlying technological differences can explain

the persistent effect of electricity prices.

estimates in Linn (2008) using different variation based on fixed weight price indices as instruments for energy prices.
Appendix Table G shows that our estimates of the effects of current prices on quantity of electricity purchased,
rather than intensity, are within the range of elasticity estimates in the literature for industrial consumers (Blonz,
2021; Paul et al., 2009). We are unaware of any estimates of entry-year price elasticities for years after entry against
which to compare ours; Linn (2008) finds that, in their entry year, entrants respond 30-50% less to current prices
than incumbents.
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6.2 Productivity

Our productivity results use as outcome variables our energy and total factor productivity estimates

from Section 5.2. Figure 3.b shows the time trends of total factor productivity and the relative

productivity of energy compared with labor. This figure shows that the time series of the relative

productivity of energy compared with labor is relatively constant until the mid-2000s, then begins to

fall to about 75% of its 1976 level. This trend implies similar growth in the productivities of energy

and labor over much of this time period, and is based on more granular data than previous studies

(Hassler et al., 2012). Meanwhile, the total factor productivity trend shows that the productivity

of all inputs has more than doubled over this time period, consistent with prior work (Greenstone

et al., 2012).

Table 4 begins to show that initial energy prices lead to persistent differences in these productiv-

ities. Columns 1 and 2 show that both initial and current raw fuels prices have long-run effects on

the energy bias of technological change, for all industries and electricity-intensive industries respec-

tively. Plants that enter when petroleum or coal prices are high consistently use their energy inputs

more efficiently relative to their labor inputs: a 10% increase in the entry-year price of one of these

raw fuels increases energy productivity by 0.7% and 0.1%, respectively.29 Similarly to our energy

intensity results, we find that contemporaneous natural gas prices are important determinants of

relative energy productivity. Conversely, the effects of initial and contemporaneous fuel prices on

total factor productivity are an order of magnitude smaller and are generally statistically indis-

tinguishable from zero: higher entry-year raw fuel prices bias technological change toward energy

relative to labor, but do not affect total factor productivity in meaningful ways.

Turning to the OLS and instrumental variables estimates of the effects of electricity prices on

productivity, we again find evidence of lock-in of plants’ productivity bias (Table 5). Plants that pay

higher electricity prices in their entry year exhibit persistently higher energy productivity relative to

labor productivity, both in the OLS estimates (Panel A) and in the instrumental variables estimates

(Panel B). We again find instrumental variables estimates of the relative energy productivity effects

in that are larger in magnitude than the OLS estimates, consistent with measurement error in initial

29Similarly to Table 2, we adjust the energy elasticity estimates in Table 4 by the average 1976 fuel generation
shares in Appendix Table A.4 to arrive at the average weighted elasticity.
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electricity prices. Focusing specifically on our preferred instrumental variables estimates, we find

that a 10% increase in entry-year electricity prices increases relative energy productivity by 3%,

with no effect on total factor productivity. Taken together, this pattern of results indicates that

plants that select into entry at higher electricity prices are not only using fewer energy inputs per

dollar of revenue, as we showed above; they are also using these inputs more efficiently.30

The responses of energy-specific productivity to entry-year and current electricity prices are

also consistent with directed technical change. Higher entry-year prices encourage adoption of

more energy-efficient production processes, but contemporaneous energy productivity also improves

relative to other inputs if prices subsequently increase.31 However, entry-year electricity prices are

almost as important as contemporaneous ones: the elasticities are statistically indistinguishable in

Table 5. The overall effect of entry-year electricity prices on relative energy productivity is more

than five times as large as the same increase in coal transport costs on relative coal capital investment

(Meng, 2021) and the effects of air pollution regulation on manufacturing total factor productivity

(Greenstone et al., 2012). These economically meaningful estimates highlight the important role of

higher energy prices and, by extension, carbon pricing policies in directly incentivizing reductions

in energy use.

Our results suggest that differences in the relative productivity of energy inputs chosen at entry

are able to fully explain why technology lock-in arises. The effect of entry-year energy prices on

productivity indicates that selection at entry on the basis of these prices is important: marginal

entrants at higher prices are more productive, and then these differences in productivity persist

over time. The magnitudes of the relative energy productivity effects of initial electricity prices

are somewhat larger and statistically indistinguishable from the effects on energy intensity in Table

3. Appendix A.1 shows that the overall lock-in effect is the weighted sum of the wedge in energy

intensity between new entrants and incumbents that arises due to capital adjustment costs and

the elasticity of productivity with respect to entry-year prices, where the weights depend on the

substitution parameter; for selection on productivity to fully explain the difference between entrants

30Recall that the energy productivity estimate gives the relative productivity of energy inputs to labor inputs, and
hence alone does not indicate an overall increase in energy productivity.

31We expect current electricity prices to be correlated with current productivity because both depend on historical
prices. This is true even when innovations in the price and productivity series are independent.
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and incumbents’ elasticities of energy intensity, we expect the elasticity of energy productivity to

be weakly larger than the elasticity of energy intensity.32 An implication of our empirical results

therefore is that the contribution of capital adjustment costs to creating lock-in appears to be

small by comparison.33 Relative to the model results in Figure 1 and Appendix Figure A.1, our

estimate of the effect of entry-year electricity prices on energy intensity is analogous to slope of the

curve showing total lock-in for plants facing capital adjustment costs (i.e., the short-dashed curve),

averaged across plants. The similar magnitudes of our energy intensity and energy productivity

elasticities suggest that energy intensity and energy productivity respond to changes in entry-year

electricity prices approximately one-for-one, so that the curve measuring the energy intensity of

incumbents absent capital adjustment costs lies very close to the curve measuring total lock-in in

these figures (i.e., the solid and short-dashed curves, respectively).

Similarly to the energy intensity results, we find that the effects of entry-year electricity prices

on relative energy productivity persist throughout a plant’s lifetime. Table 6 shows that there is

limited evidence of a decline in the effects of initial electricity prices as plants age; an additional year

of operations reduces the effect of entry-year electricity prices on relative energy productivity by 2%.

These results indicate significant path dependence in the productivity bias of energy inputs and the

importance of correctly aligning plants’ incentives when they choose their production technologies.

In Appendix Table A.6, we also show estimates of the effects of entry-year electricity prices on

quantities of energy inputs consumed, as opposed to energy intensity; we find that these effects

can also be explained by persistent differences in relative productivity, though are somewhat less

precisely estimated than the intensity elasticities.34 We discuss these estimates in more detail in

Appendix F, and Appendix Table A.8 discusses the robustness of the elasticity estimates to the

use of different covariates, data subsamples, and data sources. The results using these alternative

models are similar in sign, magnitude, and precision to our main estimates, as are estimates that

32The weights based on the substitution parameter reflect the fact that energy and capital are complementary,
which is a necessary condition for capital adjustment costs to constrain energy choices.

33The non-linearity of capital adjustment frictions implies that there may be heterogeneous effects depending on
the size of the price change. The difference between lock-in for a plant facing adjustment costs and for a hypothetical
plant with fully flexible capital is non-monotonic in the price change, and largest for plants which are close to the
threshold at which paying fixed adjustment costs is optimal. This implies that targeted capital adjustment subsidies
are likely to be more effective than ones applied to all firms.

34The estimates on levels of energy use, rather than intensity, shown in Appendix Table A.6 suggest that much of
the response of energy intensity is in fact driven by changes in energy usage.
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account for a potential lag between the decision to open and the first year of operations (Appendix

Table A.11). We also find less precisely estimated effects of similar magnitude of entry-year prices

on productivity when controlling for the mean of electricity prices in the years between entry and

today, on the sample of plants that are at least three years old, suggesting that lock-in at entry

arises while plants continue to make investment decisions based the prices that prevail at different

times throughout their life (Appendix Table A.11).

The effects of entry-year electricity prices on energy intensity and energy productivity do not

appear to be driven by any single industry. Appendix Table A.9 presents estimates of heterogeneous

effects of entry-year electricity prices on these outcomes for eleven major industry groups (Doraszel-

ski and Jaumandreu, 2018). Appendix H discusses these heterogeneity results in more detail, but

a key take-away is that lock-in seems to be important in all industries, though the differential

lock-in effects by industry are imprecisely estimated. These results also suggest that the effects of

entry-year electricity prices are not meaningfully different in industries that produce more or less

homogeneous goods (e.g., printing and paper products versus transportation goods), that produce

many or fewer products (e.g., chemicals versus timber and furniture), or that do and do not use fuel

feedstocks in important ways (e.g., non-metallic minerals versus agricultural machinery). Appendix

Table A.2 shows that our different measures of energy intensity vary across these industry groups

on average.

7 Discussion and Implications for Climate Policy

Overall, we find robust evidence of technology lock-in: entry-year electricity prices are important

determinants of lifetime manufacturing energy use, given plants’ expectations of future prices. It is

worth noting that these lock-in elasticity estimates are agnostic about plants’ beliefs about future

prices, and their interpretation does not require taking a stand on what these beliefs actually are.

Indeed, Appendix Figure A.1 shows that lock-in arises in both extreme cases of perfect foresight

and complete ignorance about future price changes. These simulation results do suggest that com-

mitment to carbon pricing could reduce current energy intensity by correctly aligning plants’ beliefs

about the future path of electricity prices for plausible carbon tax magnitudes; prior research finds
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similar anticipation results for other U.S. environmental regulation (Clay et al., 2021). For moder-

ate price changes, energy intensity of incumbents with perfect foresight is below energy intensity of

incumbents who do not anticipate future price changes (Appendix Figures A.1.a v. A.1.b), though

delaying even anticipated carbon pricing creates lock-in due to discounting of higher energy costs in

the future in favor of lower investment costs today. For large, unanticipated price changes, the most

locked-in plants close. As a result, if plants ignore information about future energy price changes,

then the announcement of future carbon price increases may have a more limited effect on energy

efficiency today and until the price changes actually occur.

There are at least three reasons why our lock-in estimates may be lower bounds on the effects

of entry-year electricity prices on subsequent energy efficiency. That is, the estimates may underes-

timate improvements in energy efficiency resulting from a carbon tax. The first reason is related to

the closure of the most locked in plants in response to price changes. Our effects measure changes

in the average energy intensity of surviving plants, which excludes the plants that exited (or did not

enter) in response to higher electricity prices. Therefore, the effects that we estimate measure the

extent to which the average plant can improve its energy efficiency through investment or changes

in input mix, without ceasing operations. Since the plants that exit are plausibly the ones most

locked in to the dirtiest technologies, our estimates may underestimate lock-in at the plant level,

and therefore average energy efficiency may improve more in response to a carbon tax than our

estimates suggest.35

Second, our use of revenue-based total factor productivity measures also understates the effects

of energy prices compared with quantity-based productivity measures. Revenue-based productivity

measures are standard in the literature due to limitations of most plant-level data sets, which

typically do not collect detailed output price and quantity data (Allcott et al., 2016; Ganapati

et al., 2020; Greenstone et al., 2012). When marginal costs rise as energy becomes more expensive,

standard theory predicts that plants with market power will increase prices for their products and

reduce quantities supplied. The revenue-based productivity measures capture any negative effects

of increasing energy costs as well as any positive price change, which could cause us to understate

the effect of electricity prices on total factor productivity; it may be that increasing electricity prices

35This intuition underlies the results of our simulations of the multi-period model in Appendix A.2.
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would generate larger total factor productivity improvements than our estimates suggest.

Third, we investigate the persistent effects of short-run electricity price variation resulting from

year-on-year variation in raw fuels prices. Conversely, a goal of carbon pricing is to implement long-

run increases in electricity prices through policy. The responses to the short-run price variation

that we study are consistent with plants’ basing their best guess of electricity prices tomorrow on

observed electricity prices today (i.e., with plants believing that prices follow a random walk).36

Our lock-in estimates again may understate the energy efficiency effects of sustained commitment

to higher electricity prices because plants may install more energy-efficient technology with the

knowledge that prices may be higher for many years in the future.

Our estimates of the existence and nature of technology lock-in could help inform climate policy.

A first key take-away is that delayed action on carbon pricing seems likely to come at the expense of

significant energy efficiency gains. Timely implementation of carbon pricing is one policy that could

help incentivize early and persistent reductions in industrial energy use. Our elasticity estimates

suggest that a given plant’s energy intensity falls by approximately 2.5% through its lifetime for

every 10% increase in entry-year electricity prices. This price increase is roughly equivalent to the

change resulting from a carbon tax on the U.S. electricity sector of 28 $/metric ton CO2, or about

half of estimates of the social cost of carbon used in government policy (Carleton and Greenstone,

2021; Cleary and Palmer, 2020). The lasting “hysteresis” effect of entry-year prices suggests that

such a carbon tax need not be permanent for reductions in lifetime energy use to occur. However,

the price changes needed to achieve U.S. industrial energy efficiency targets seem to be large: a 30%

reduction in energy intensity for the average existing plant requires increasing electricity prices by

120%.

In addition, our results suggest that there could be a role for vintage-differentiated energy ef-

ficiency regulations in industry. These types of regulations are rarely employed in manufacturing,

but are more common in sectors such as transportation and construction (Jacobsen and Kotchen,

2013; Levinson, 2021; Stavins, 2006; West et al., 2017). In manufacturing, existing pollution reg-

36Consistent with this interpretation, we also find that energy intensity and productivity respond similarly to entry-
year electricity prices regardless of whether plants open during increasing or decreasing electricity price regimes, and
that the response to the one-period lag of electricity prices is similar in sign, magnitude, and precision to the main
estimates (Appendix Tables A.10 and A.11).
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ulations tend to “grandfather” older plants by exempting them from meeting the latest standards

(Stavins, 2006). By contrast, we show that efficiency mandates or technology adoption subsidies to

manufacturing plants that entered during low energy price regimes could potentially help reduce

persistent differences in energy use created by lock-in if appropriately targeted.

Finally, the response of energy-specific productivity to entry-year prices suggests that directed

technological change could play an important role in reducing industrial energy use. One possible

way to improve the productivity of energy inputs is through subsidies for energy-specific research

and development, which Casey (2022) shows advance new energy-efficient technologies that reduce

industrial energy use. Given the persistence of entry-year technologies’ energy productivity, creating

new technologies that use energy more productively and then incentivizing their initial adoption

could reduce plants’ lifetime energy use in important ways.

Policies that incentivize industrial energy-efficiency improvements (such as vintage energy-

efficiency regulations or technology adoption subsidies) and policies that incentivize reductions in

emissions upstream in the electricity sector (such as carbon pricing) both help to reduce industrial

energy intensity as long as the electricity sector is polluting. While this is the case in the U.S. today,

and even more so in developing countries, expansion of the use of clean renewables (e.g., solar) in

electricity generation will reduce the social costs of industrial electricity consumption. Such a tran-

sition to a cleaner grid would not necessarily reduce industrial energy intensity, but would reduce

the negative externalities resulting from electricity consumption and the costs of delayed climate

policy.

8 Conclusion

This paper provides new evidence of technology lock-in in the manufacturing sector and analyzes

its causes and consequences. Using 35 years’ worth of U.S. Census microdata, we show two main

ways in which technology lock-in arises. First, we estimate that the prices of fossil fuel inputs into

electricity generation have persistent effects on manufacturing plants’ energy usage—even after the

use of these fuels has declined. Second, we show that the prevailing electricity price in a plant’s

entry year affects their energy usage throughout their lifetime: plants that are established when
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electricity prices are low, below the full social cost of energy consumption, consume more energy in

subsequent years. On average, we estimate that at least 25% of the energy reductions benefits from

carbon pricing are lost by failing to implement these policies in a plant’s entry year.

By estimating plant-level total factor productivity and the relative productivity of energy to

labor, we demonstrate that an initial and persistent effect of electricity prices on energy produc-

tivity seems to play a key role in explaining this lock-in. Plants may choose not to undertake

later energy efficiency improvements due to capital adjustment costs, but we provide new evidence

that their production functions are also different to begin with. Our results indicate that a 10%

increase in entry-year electricity prices improves the productivity of energy relative to labor by ap-

proximately 3% in subsequent years. Abatement cost functions that ignore this lock-in seem likely

to underestimate the emissions reductions benefits from imposing a carbon tax on new entrants

and overestimate achievable emissions reductions from incumbents tomorrow. Estimating the im-

plications of delayed climate policy on aggregate industry dynamics and misallocation through a

macroeconomic lens and, by extension, what constitutes an optimal policy are important areas for

future work.

The implications of these results for climate policy are consequential. Ignoring lock-in under-

estimates the benefits of pricing carbon today. In the absence of current commitments to do so,

future policy may have to be more stringent to counteract the current path of energy-inefficient

manufacturing production: small carbon taxes or clean technology subsidies may be insufficient to

incentivize existing plants to reverse sunk and partially irreversible capital investments or otherwise

to exit. Meanwhile, continued expansion of cheap fossil fuel power around the world seems likely

to entrench energy-inefficient technologies and lock in higher emissions levels for many years. A

major push to increase energy efficiency worldwide is a key part of proposals to constrain carbon

emissions to “safe” levels, which will require annual improvements exceeding three times the annual

rate achieved in the last two decades (IEA, 2021). Further delays in climate policy, and more plants

locked into energy-inefficient technology, will make these targets increasingly difficult to achieve.
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9 Figures and Tables

Figure 1: Simulated Lock-in
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Notes: This figure shows simulation results for the energy intensity of incumbent manufacturing plants relative to

entrants as a function of their entry-year energy price. The x-axis shows initial energy price as a fraction of the

current price. “Static with exit” shows relative energy intensity in scenarios where plants cannot adjust their capital

stocks after they enter. “Partial capital and exit” shows relative energy intensity in scenarios where incumbents

can re-optimize their capital stock subject to fixed and convex adjustment costs. “Flexible capital and exit” shows

relative energy intensity in scenarios where all inputs can be re-optimized without adjustment costs. Energy intensity

of entrants is normalized to 1.
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Figure 2: Time Series of Electricity Prices
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Notes: This figure shows the time series of average electricity prices paid by the industrial sector in the United

States. Prices are in 2011 dollars per million British thermal units (BTU).
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Figure 3: Time Series of Energy Intensity and Productivity

Panel A: Energy Intensity Trends

Panel B: Productivity Trends

Notes: This figure shows the time series of average energy intensity (Panel A) and relative energy productivity and

total factor productivity (Panel B) of the manufacturing sector in the United States. Energy intensity is calculated

as electricity consumption (kWh) per dollar of revenue, kg CO2 produced per dollar revenue, and million BTU per

dollar revenue. The productivity of energy inputs is measured relative to labor. Productivities are the authors’

calculations using the estimation procedure outlined in Section 5.2.
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Table 1: First Stage Effects of Weighted Fuel Prices on Electricity Prices

log(Initial Electricity Pricei,t0) log(Current Electricity Pricei,t)
(1) (2)

Coal Shares,1976 × Current Coal Price−s,t 0.013 0.065*
(0.009) (0.035)

Natural Gas Shares,1976 × Current Gas Price−s,t -0.006* 0.058***
(0.003) (0.012)

Petroleum Shares,1976 × Current Petroleum Price−s,t 0.003 0.012
(0.003) (0.010)

Coal Shares,1976 × Initial Coal Price−s,t0 0.220*** 0.055**
(0.049) (0.023)

Natural Gas Shares,1976 × Initial Gas Price−s,t0 0.056*** 0.011*
(0.012) (0.006)

Petroleum Shares,1976 × Initial Petroleum Price−s,t0 0.036*** 0.019***
(0.012) (0.005)

N 1294000 1294000

Industry × Year × Entry Year Fixed Effects Yes Yes
Industry × State Fixed Effects Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the effects of initial and contemporaneous coal, natural gas, and petroleum prices on the log

of initial and contemporaneous electricity prices. Fuel prices are calculated as the leave-out-mean log price across

states and weighted by the share of each fuel in electricity generation in each state. Electricity prices are measured

in USD per kWh (2011). Regressions are weighted using Census sampling weights. Observation counts are rounded

in accordance with Census disclosure requirements. Standard errors clustered by state are in parentheses.
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Table 2: Reduced Form Effects of Weighted Fuel Prices on Energy Intensity

log(Electricity Intensityi,t) log(Electricity Intensityi,t) log(CO2 Intensityi,t) log(BTU Intensityi,t)
Elec-Intensive Industries

(1) (2) (3) (4)
Coal Shares,1976 × Current Coal Price−s,t 0.043 0.055 -0.019 0.073*

(0.031) (0.036) (0.041) (0.039)

Natural Gas Shares,1976 × Current Gas Price−s,t -0.053*** -0.052*** -0.053*** -0.056***
(0.011) (0.012) (0.011) (0.012)

Petroleum Shares,1976 × Current Petroleum Price−s,t -0.000 -0.004 0.001 0.001
(0.009) (0.009) (0.010) (0.010)

Coal Shares,1976 × Initial Coal Price−s,t0 -0.121*** -0.123*** -0.163*** -0.129***
(0.028) (0.031) (0.029) (0.029)

Natural Gas Shares,1976 × Initial Gas Price−s,t0 -0.003 -0.013 0.001 0.002
(0.009) (0.012) (0.008) (0.008)

Petroleum Shares,1976 × Initial Petroleum Price−s,t0 -0.028*** -0.031*** -0.028*** -0.024***
(0.005) (0.006) (0.005) (0.005)

N 1294000 955000 1294000 1294000

Industry × Year × Entry Year Fixed Effects Yes Yes Yes Yes
Industry × State Fixed Effects Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the effects of initial and contemporaneous coal, natural gas, and petroleum prices on the

log of plants’ energy intensity. Electricity intensity is measured in kWh per dollar of revenue, CO2 intensity is kg

CO2 per dollar of revenue, and BTU intensity is BTU per dollar of revenue. Electricity-intensive industries are

industries for which electricity accounts for at least 70% of total energy expenditures. Fuel prices are calculated as

the leave-out-mean log price across states and weighted by the share of each fuel in electricity generation in each state.

Regressions are weighted using Census sampling weights. Observation counts are rounded in accordance with Census

disclosure requirements. All dollar values are in 2011 USD. Standard errors clustered by state are in parentheses.
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Table 3: Effects of Initial and Current Electricity Prices on Energy Intensity

log(Electricity Intensityi,t) log(Electricity Intensityi,t) log(CO2 Intensityi,t) log(BTU Intensityi,t)
Elec-Intensive Industries

(1) (2) (3) (4)
Panel A: OLS
log(Current Electricity Pricei,t) -0.851*** -0.831*** -0.824*** -0.807***

(0.012) (0.011) (0.010) (0.009)

log(Initial Electricity Pricei,t0) -0.040*** -0.037*** -0.028*** -0.026**
(0.009) (0.010) (0.010) (0.010)

Panel B: IV
log(Current Electricity Pricei,t) -0.764*** -0.734*** -0.829*** -0.761***

(0.090) (0.104) (0.072) (0.087)

log(Initial Electricity Pricei,t0) -0.165*** -0.232*** -0.289*** -0.144**
(0.051) (0.059) (0.079) (0.059)

K-P F stat 12.1 11.9 12.1 12.1
N 1294000 955000 1294000 1294000

Industry × Year × Entry Year FE Yes Yes Yes Yes
Industry × State FE Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the effects of initial and contemporaneous log electricity prices on the log of plants’ energy

intensity. Models in Panel A are estimated using OLS and models in Panel B are estimated using IV. In IV models,

electricity prices are instrumented using initial and contemporaneous prices for coal, natural gas, and petroleum,

weighted by the share of each fuel in state electricity generation. Electricity prices are measured in dollars per kWh,

electricity intensity is kWh per dollar of revenue, CO2 intensity is kg CO2 per dollar of revenue, and BTU intensity

is BTU per dollar of revenue. Electricity-intensive industries are industries for which electricity accounts for at least

70% of total energy expenditures. Regressions are weighted using Census sampling weights. Observation counts

are rounded in accordance with Census disclosure requirements. All dollar values are in 2011 USD. Standard errors

clustered by state are in parentheses.
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Table 4: Reduced Form Effects of Weighted Fuel Prices on Productivity

log(Energy Productivityi,t) log(Energy Productivityi,t) log(TFPi,t) log(TFPi,t)
Elec-Intensive Industries Elec-Intensive Industries

(1) (2) (3) (4)
Coal Shares,1976 × Current Coal Price−s,t -0.088∗ -0.082 -0.035∗∗ -0.034∗

(0.048) (0.051) (0.017) (0.018)

Natural Gas Shares,1976 × Current Gas Price−s,t 0.037∗∗∗ 0.046∗∗∗ 0.012∗∗∗ 0.005
(0.013) (0.012) (0.004) (0.004)

Petroleum Shares,1976 × Current Petroleum Price−s,t 0.008 0.013 -0.010∗∗∗ -0.009∗∗∗

(0.013) (0.012) (0.002) (0.003)

Coal Shares,1976 × Initial Coal Price−s,t0 0.178∗∗∗ 0.171∗∗∗ 0.037∗ 0.041∗

(0.041) (0.044) (0.022) (0.025)

Natural Gas Shares,1976 × Initial Gas Price−s,t0 -0.018 -0.011 0.006∗ 0.011∗∗∗

(0.017) (0.017) (0.004) (0.004)

Petroleum Shares,1976 × Initial Petroleum Price−s,t0 0.035∗∗∗ 0.035∗∗∗ -0.005 -0.002
(0.008) (0.011) (0.005) (0.006)

N 1294000 955000 1294000 955000

Industry × Year × Entry Year Fixed Effects Yes Yes Yes Yes
Industry × State Fixed Effects Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the effects of initial and contemporaneous coal, natural gas, and petroleum prices on the log

of plants’ productivities. Electricity prices are measured in dollars per kWh, energy productivity is the productivity

of electricity relative to labor, and total factor productivity is the productivity common to all manufacturing inputs.

Electricity-intensive industries are industries for which electricity accounts for at least 70% of total energy expendi-

tures. Fuel prices are calculated as the leave-out-mean log price across states and weighted by the share of each fuel

in electricity generation in each state. Regressions are weighted using Census sampling weights. Observation counts

are rounded in accordance with Census disclosure requirements. All dollar values are in 2011 USD. Standard errors

clustered by state are in parentheses.
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Table 5: Effects of Initial and Current Electricity Prices on Productivity

log(Energy Productivityi,t) log(Energy Productivityi,t) log(TFPi,t) log(TFPi,t)
Elec-Intensive Industries Elec-Intensive Industries

(1) (2) (3) (4)
Panel A: OLS
log(Current Electricity Pricei,t) 0.881∗∗∗ 0.860∗∗∗ 0.060∗∗∗ 0.060∗∗∗

(0.023) (0.020) (0.007) (0.009)

log(Initial Electricity Pricei,t0) 0.080∗∗∗ 0.093∗∗∗ -0.037∗∗∗ -0.047∗∗∗

(0.019) (0.023) (0.008) (0.012)

Panel B: IV
log(Current Electricity Pricei,t) 0.525∗∗∗ 0.673*** 0.088 -0.017

(0.138) (0.139) (0.127) (0.119)

log(Initial Electricity Pricei,t0) 0.349∗∗∗ 0.319∗∗∗ 0.049 0.124
(0.122) (0.126) (0.077) (0.083)

K-P F stat 12.1 11.9 12.1 11.9
N 1294000 955000 1294000 955000

Industry × Year × Entry Year FE Yes Yes Yes Yes
Industry × State FE Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the effects of initial and contemporaneous log electricity prices on the log of plants’ energy

productivity relative to labor productivity and on the log of plants’ total factor productivity. Models in Panel

A are estimated using OLS and models in Panel B are estimated using IV. In IV models, electricity prices are

instrumented using initial and contemporaneous prices for coal, natural gas, and petroleum, weighted by the share

of each fuel in state electricity generation. Electricity prices are measured in dollars per kWh, energy productivity

is the productivity of electricity relative to labor, and total factor productivity is the productivity common to all

manufacturing inputs. Electricity-intensive industries are industries for which electricity accounts for at least 70% of

total energy expenditures. Regressions are weighted using Census sampling weights. Observation counts are rounded

in accordance with Census disclosure requirements. All dollar values are in 2011 USD. Standard errors clustered by

state are in parentheses.
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Table 6: Heterogeneous Effects of Initial Electricity Prices on Energy Intensity and Productivity,
by Plant Age

log(Electricity Intensityi,t) log(CO2 Intensityi,t) log(BTU Intensityi,t) log(Energy Productivityi,t) log(TFPi,t)
(1) (2) (3) (4) (5)

log(Current Electricity Pricei,t) -0.871*** -1.136*** -0.903*** 0.739∗∗∗ 0.109
(0.061) (0.097) (0.069) (0.131) (0.096)

log(Initial Electricity Pricei,t0) -0.134** -0.140** -0.076 0.250∗ 0.097
(0.052) (0.061) (0.054) (0.130) (0.095)

log(Initial Electricity Pricei,t0)×Agei,t 0.006** 0.006 0.004 -0.006 -0.010∗∗∗

(0.003) (0.004) (0.004) (0.007) (0.003)

K-P F stat 13.3 13.3 13.3 13.3 13.3
N 1294000 1294000 1294000 1294000 1294000

Industry × Year × Entry Year FE Yes Yes Yes Yes Yes
Industry × State FE Yes Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: All models are estimated using IV. Electricity prices are instrumented using initial and contemporaneous

prices for coal, natural gas, and petroleum, weighted by the share of each fuel in state electricity generation, and

initial electricity prices × plant age is instrumented using the interaction of the initial weighted fuel prices times age.

Electricity prices are measured in dollars per kWh, electricity intensity is kWh per dollar of revenue, CO2 intensity

is kg CO2 per dollar of revenue, BTU intensity is BTU per dollar of revenue, energy productivity is the productivity

of electricity relative to labor, total factor productivity is the productivity common to all manufacturing inputs, and

plant age is measured in years since entry. Regressions are weighted using Census sampling weights. Observation

counts are rounded in accordance with Census disclosure requirements. All dollar values are in 2011 USD. Standard

errors clustered by state are in parentheses.
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Online Appendix

A Model Details and Extensions

This appendix extends the conceptual framework in Section 3. First, we derive comparative statics

predictions underlying the responses of energy intensity to energy price changes and illustrate the

mechanisms through which lock-in arises. Second, we extend the two-period model in the main

text to show that the same intuitions carry over to a richer multi-period model under a range of

assumptions about plant expectations of future energy prices.

A.1 Comparative Statics

In this section, we present detailed results for comparative statics in the model of lock-in from

Section 3. We show how energy intensity for entrants and incumbents respond differently to changes

in energy prices, and that the differences can be explained by the capital adjustment cost and

selection on productivity channels that give rise to lock-in.

A.1.1 Comparative Statics for New Entrants

We begin by estimating the response of an entrant’s energy intensity to a change in energy price

in a given year. A potential entrant draws productivity shocks ωH
i and ωE

i independently from

distributions with densities gH(·) and gE(·), respectively, and observes prices of output, labor and

energy, pY , w and pE, as well as a rental rate of capital r. The potential entrant chooses inputs of

capital K, labor L, and energy E to maximize profits:

max
K,L,E

π(K,L,E;ωH
i , ω

E
i ) = pY ωH (Kρ + Lρ + (ωEE)

ρ)
ν
ρ − rK − wL− pEE

The potential entrant chooses to enter if profits exceed the fixed costs of entry, that is if:

π∗(p, w, r, pE;ω
H
i , ω

E
i ) = pY ωH ((K∗)ρ + (L∗)ρ + (ωEE

∗)ρ)
ν
ρ − wL∗ − rK∗ − pEE

∗ ≥ F
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In this expression, L∗ and E∗ are labor and energy inputs, respectively, that solve the static profit

maximization problem and F is the fixed entry cost. We assume that the capital stock K∗ is fully

flexible on entry, subject to a linear capital rental rate r.

To obtain the optimal energy intensity of production, we solve for the conditional factor demand

from the cost minimization problem:

L(K,L,E, λ) = rK + wL+ pEE + λ(Y − ωH (Kρ + Lρ + (ωEE)
ρ)

ν
ρ )

We obtain the conditional energy demand:

E∗ = Y
1
νω

− 1
ν

H ω−1
E

(
pE
ωE

) −1
1−ρ

(
r

−ρ
1−ρ + w

−ρ
1−ρ +

(
pE
ωE

) −ρ
1−ρ

)−1
ρ

Dividing through by output Y provides a closed-form for energy intensity as a function of input

prices, productivity shocks, and the output level:

E∗

Y
= Y

1
ν
−1ω

− 1
ν

H ω−1
E

(
pE
ωE

) −1
1−ρ

(
r

−ρ
1−ρ + w

−ρ
1−ρ +

(
pE
ωE

) −ρ
1−ρ

)−1
ρ

First, we can show that plants facing higher energy prices will be less energy intensive. Using

the expression for energy intensity above, the elasticity of energy intensity with respect to price is:

eE
Y
,pE

=

(
−1

1− ρ

) r
−ρ
1−ρ + w

−ρ
1−ρ

r
−ρ
1−ρ + w

−ρ
1−ρ +

(
pE
ωE

) −ρ
1−ρ


We must have that substitution ρ < 1 while prices and productivity shocks are positive, and so

eE
Y
,pE

< 0.

Second, we can show that plants with higher energy productivity draws will be less energy inten-

sive if inputs are sufficiently complementary. Following the approach to derive the price elasticity,

we obtain an expression for the elasticity of energy intensity with respect to energy productivity:

eE
Y
,ωE

=
−1

ρ− 1

(
ρ+

(
pE
ωE

) ρ
ρ−1 (

w
ρ

ρ−1 + r
ρ

ρ−1 + p
ρ

ρ−1

E ω
− ρ

ρ−1

E

)−1
)

50



Again, ρ < 1 and prices and productivity shocks are positive. This elasticity of energy intensity

with respect to energy productivity is negative if the complementarity between energy and other

inputs, as captured by ρ, is sufficiently high. That is, we have eE
Y
,ωE

< 0 if:

−ρ >

(
pE
ωE

) ρ
ρ−1(

w
ρ

ρ−1 + r
ρ

ρ−1 +
(

pE
ωE

) ρ
ρ−1

)

Since the right-hand side of the above inequality must be less than one and we estimate ρ ≈ −3,

this is the relevant case in our paper (Appendix Table A.5).37

In addition to changing the energy intensity of entrants, changing energy prices also changes the

threshold level of productivity of the marginal entrant. The elasticities above describe how potential

entrants facing different initial prices or energy productivity shocks will choose different optimal

energy intensities conditional on entry. At the industry level, there is an additional response to

changes in energy prices because of plants’ decision to select into entry. This cohort-level elasticity

of energy intensity for entrants, ēE
Y
,pE

, will be weakly smaller in absolute value than the plant-

level elasticity eE
Y
,pE

, because an increase in energy prices will increase the threshold value of ωE

needed for profits to exceed the fixed costs of entry in the first place. The change in cohort-level

energy productivity depends on the distribution of ωE among potential entrants, but an increase

in the entry threshold, below which plants do not enter, must (weakly) increase the average energy

productivity among entrants and (when inputs are complementary) decrease the average energy

intensity. We can see this by considering the elasticity of the marginal entrant:

eE
Y
,pE

=
(

−1
1−ρ

)(
w

−ρ
1−ρ+r

−ρ
1−ρ

r
−ρ
1−ρ+w

−ρ
1−ρ+

(
pE
ωE

) −ρ
1−ρ

)
+
(

−1
1−ρ

)
× dωE

dpE
× pE

ωE
×

( (
pE
ωE

) −ρ
1−ρ

r
−ρ
1−ρ+w

−ρ
1−ρ+

(
pE
ωE

) −ρ
1−ρ

− ρ

)
(8)

In this expression, the first term is the direct effect of the price change on the input mix and the

second term is the selection effect. If energy prices increase, then potential entrants must have

37As ρ → −∞, the CES production function approaches the Leontief production function, where the optimal
input mix requires K = L = ωEE. Holding output fixed, E decreases proportionately to an increase in ωE . Thus
eE

Y ,ωE
→ 1. On the other hand, consider the case of perfect substitutes (ρ = 1), where the firm demands only the

factor with highest marginal product per dollar. If ωE is sufficiently small, the firm will demand no energy. If ωE is
sufficiently large, the firm will use only energy inputs. Therefore, energy intensity is (weakly) increasing in ωE .
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a higher energy productivity draw ωE for it to be worthwhile to enter. Both of these channels

contribute to differences in the elasticities of entrants and incumbents that arise due to lock-in, as

we will show.

A.1.2 Comparative Statics for Incumbents

Unlike entrants, incumbents inherit a capital stock constrained by adjustment costs and an energy

productivity determined by entry-year prices. For incumbents, capital stock is fixed in the short

run at K̄, so they face the cost minimization problem with Lagrangian:

L(L,E, λ) = wL+ pEE + λ(Y − ωH

(
K̄ρ + Lρ + (ωEE)

ρ
) ν

ρ )

As before, we obtain the conditional factor demand:

E∗ =

((
Y

ωH

) ρ
ν

− K̄ρ

) 1
ρ (

ω
1

1−ρ

E

)((
w

pE

) 1
ρ−1

+ ω
1

ρ−1

E

)−1
ρ

The elasticity of energy intensity with respect to pE is:

eE
Y
,pE

=

(
−1

1− ρ

) w
−ρ
1−ρ

w
−ρ
1−ρ +

(
pE
ωE

) −ρ
1−ρ

 (9)

Because ρ < 1 and prices and productivity are positive, energy intensity for incumbents is

decreasing in energy prices pE as for entrants.

A.1.3 Comparing Entrants and Incumbents

Using the results derived above, we can show that there are two reasons why the elasticities of

entrants and incumbents differ, which correspond to the two lock-in mechanisms that we analyze

in Section 3. The first channel is capital adjustment costs: entry-year energy prices determine the

initial choice of capital, which is then costly to adjust. The second channel is due to the selection

effect on productivity: marginal entrants at higher prices have a higher energy productivity, leading

to a higher average productivity and, by extension, lower average energy intensity for the cohort.
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More specifically, using (8) and (9) we can write the difference between the elasticities of an

incumbent and the marginal entrant as:

eIE
Y
,pE

− eEE
Y
,pE

=

(
−1

1− ρ

) w
−ρ
1−ρ

w
−ρ
1−ρ +

(
pE
ωE

) −ρ
1−ρ

− w
−ρ
1−ρ + r

−ρ
1−ρ

r
−ρ
1−ρ + w

−ρ
1−ρ +

(
pE
ωE

) −ρ
1−ρ

+

(
1

1− ρ

)
× dωE

dpE
× pE
ωE

×


(

pE
ωE

) −ρ
1−ρ

r
−ρ
1−ρ + w

−ρ
1−ρ +

(
pE
ωE

) −ρ
1−ρ

− ρ


The first term on the right-hand side is the capital adjustment cost effect and it is unambiguously

positive. This wedge arises because entrants can fully flexibly adjust their capital stock in response

to energy price changes while incumbents cannot. The second term is the selection effect and it is

unambiguously positive for complements (i.e., ρ < 0). This second part of the wedge comes from

the productivity improvements for marginal entrants entering at higher energy prices.

A.2 Multi-period Model Under Alternative Energy Price Expectations

This section extends the two-period model of myopic plants in Section 3 to include many periods

and alternative expectations about the time path of future energy prices. The results show that the

presence of lock-in does not depend on a particular model of plants’ expectations about future energy

prices. We illustrate the effects of entry-year energy prices on energy intensity in subsequent years

under two polar assumptions about plants’ expectations about future price changes. In the first

scenario, energy price changes are completely unanticipated, in the sense that plants believe that

current prices will persist forever. In the second case, potential entrants have complete knowledge

of future prices. We find that lock-in arises even in this second, perfect foresight case, because

plants discount future price changes relative to current ones in their investment decisions.

As in the model in Section 3, in the multi-period model plants produce output Y using a CES

production function combining capital K, labor L, and energy E according to:

Y (K,L,E;ωH , ωE) = ωH (Kρ + Lρ + (ωEE)
ρ)

ν
ρ (10)
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where ωH is total factor productivity, ωE is energy-specific productivity, ρ is the substitution pa-

rameter, and ν captures returns to scale. In what follows, we assume without loss of generality that

total factor productivity ωH , the output price p, and the wage w are constant and suppress them

in the notation.

In the dynamic multi-period model, plants maximize the expected present discounted value of

future profits, denoted by V , rather than profits π. Otherwise, the plants’ problems are identical

in the multi-period and two-period models. Here, in each period, plants choose inputs to maximize

expected present discounted profits:

V (K, pE, ωE) = max
K′

π̃(K; pE;ωE)− C(K ′ −K) + βE[V (K ′, pE
′, ωE)|pE] (11)

where β is the discount rate and π̃ is the solution to the standard static profit maximization problem

where static inputs (i.e., labor and energy) are chosen optimally:

max
L,E

Y (K,L,E;ωH , ωE)− pEE − wL

As before, labor and energy are static inputs and capital is a dynamic input with a one-period

time-to-build that evolves according to K ′ = (1 − δ)K + I. Capital adjustment costs C(K ′ −K)

have fixed, constant, and convex components, denoted respectively by γ0, γ1, and γ2. That is, the

cost of investing an amount I = K ′ −K is:

C(I) = 1[I > 0]× (γ0 + γ1I + γ2I
2)

In each period, potential entrants draw an energy productivity shock ωE and observe initial

energy prices pE. Entrants do not pay fixed or convex capital adjustment costs, choosing capital to

maximize V0, the expected present discounted value of profits if they enter:

V0(pE, ωE) = max
K

π̃(K; pE;ωE)− γ1K + βE [V (K, pE
′, ωE)|pE]

Plants will enter if expected present discounted profits resulting from entry exceed the fixed costs

54



of entry, F . That is, plants enter if V0(pE, ωE) > F .

Incumbent plants retain their initial productivity draw and capital stock, observe current prices,

and choose inputs to solve:

V (K, pE, ωE) = max
K′

π̃(K; pE;ωE)− C(K ′ −K) + βE [V (K, p′E, ωE)|pE]

Incumbent plants will exit if the scrap value of their capital is greater than their expected future

profits, so that V (K, pE, ω
E) < γ1K.

In the numerical example, we solve the model assuming, first, that energy price changes come as

a surprise to plants and, second, that energy price changes are perfectly anticipated. We suppose

that the price of energy changes from pE to p′E in the second period and model plants’ beliefs about

this price change as:

Pr(p′E = 1) = λ

Pr(p′E = pE) = 1− λ

Normalizing p′E = 1 in the second period, λ = 0 then corresponds to perfect surprise and λ = 1 to

perfect foresight.

We analyze the same three capital adjustment cost structures as in Section 3. The extreme cases

bound the role of capital adjustment costs in creating technology lock-in: fixed capital, with infinite

fixed capital adjustment costs γ0, and flexible capital, with no fixed or convex adjustment costs

(i.e., γ0 = γ2 = 0). In the third, more realistic scenario, we allow partial capital adjustment, with

fixed, constant, and convex adjustment costs parameterized as γ0 = 0.08, γ1 = 1, and γ2 = 0.02,

respectively. We draw energy productivity ωE from a uniform distribution U [0.25, 8] and we set

total factor productivity ωH = 3, returns to scale ν = 0.9, and substitution parameter ν = −3

(i.e., complements) for all plants. These parameters are quantitatively similar to our estimates in

the data. In addition, we set the depreciation rate equal to zero and fixed entry cost equal to

5.38 When plants perfectly foresee future prices, the magnitude of lock-in depends on the discount

38With both depreciation and fixed costs of capital adjustment, equilibrium output cycles even with constant prices
as capital stocks decrease until falling sufficiently far from optimal that reinvestment is triggered.
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rate. Entrants with a higher discount rate β will anticipate capital adjustment frictions and choose

their initial input mix to better match future prices. Because manufacturing plants generally make

capital investment decisions over 5-10 year time horizons, we show the results with β = 0.6 ≈ 0.9510

and β = 0.8 ≈ 0.955.

Appendix Figure A.1 shows the results of these model simulations, highlighting that technology

lock-in arises even if plants have perfect foresight about future energy price changes (Panel A). In a

parallel manner with Section 3, the three downward-sloping lines show the relative energy intensity

of incumbents compared with entrants under three different assumptions about the structure of

capital adjustment costs: fixed capital (blue, long dashed line), partial capital adjustment with

fixed and convex costs (orange, short-dashed line), and flexible capital with no fixed or convex

costs (green, solid line). In all instances, entry-year energy prices are important determinants of

relative energy intensity: for moderate price changes, the average incumbent that entered at a

low energy price is more energy-intensive than the average new entrant. For sufficiently large price

changes, the least efficient plants are driven from the market. The remaining incumbents have higher

energy-productivity and a lower energy-intensity of output. This selection effect can overcome the

lock-in effect and show up as a non-monotonic relationship between incumbents’ energy intensity

and the relative price of energy today and at entry.39 As in Section 3, the difference between

incumbents plants capable only of partial capital adjustment (i.e., the orange, short-dashed line)

and fully flexible incumbent plants (i.e., the green, solid line) measures the contribution of capital

adjustment costs to creating lock-in. Incumbents with higher discount rates, shown on the right,

have a smaller lock-in effect than incumbents with lower discount rates, shown on the left.

Panel B shows that lock-in is larger in the case of unanticipated future price shocks: in compari-

son to the perfect foresight model, the difference between the average energy intensity of incumbents

and new entrants is larger for moderate relative price changes than in the perfect foresight case.

For large price changes, incumbents with low energy productivity exit the market in droves, leading

to lower average energy intensity of remaining plants compared with entrants . This effect is more

pronounced than in the case of perfect foresight since many of these plants would not have entered

39This non-monotonicity especially dramatic in the unanticipated case shown in Panel B because the unanticipated
future price shock leads many plants to enter and then exit in the second period. It is absent in the other illustrative
two-period model in Section 3 because all plants close at the end of two periods.
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had they been able to foresee the price change initially. The distance between the fully flexible

incumbent plants and incumbent plants capable only of partial capital adjustment shows that the

exit of incumbents in response to large price changes is driven by capital adjustment costs. As

in the perfect foresight case, lock-in is less severe for firms with a higher discount rate, but the

mechanism is slightly different. Because more patient firms value future profits more, fixed costs of

entry are relatively less important. This implies that the minimum energy productivity threshold is

lower for firms with higher discount rates, and therefore the average entrant will have lower energy

productivity. These lower-productivity firms exit faster when prices unexpectedly rise, which leads

to a selection effect that attenuates lock-in at the cohort level. These results underscore that our

estimated effects of prices on average energy intensity may be lower bounds on the lock-in effect.

We conclude this section with a brief discussion of how insights from this highly stylized example

carry over into more general models. For capital adjustment frictions to generate technology lock-

in, it is sufficient that capital and energy are complements in production. The intuition is that an

increase in energy prices lowers the marginal product per dollar of energy, so that plants’ optimal

energy usage falls. If capital and energy are complements, this decreases the marginal product per

dollar of capital and, by extension, the optimal capital stock. If capital can optimally adjust, this

drives further decreases energy inputs. Incomplete capital adjustment will attenuate the reduction

in energy use, resulting in higher energy intensity than for a fully flexible plant. If capital and

energy are substitutes in production instead, this logic would be reversed and capital adjustment

costs would increase plants’ sensitivity to current price changes. Existing literature typically finds

that capital and energy are complements, consistent with our estimates in Section 5.2 (Hassler et al.,

2012; Ryan, 2018).

For energy productivity differences to create lock-in, we require only selection on productivity at

entry and persistence of initial productivity over time. Partial irreversibility of entry costs or capital

investments is one natural way to generate more intense selection for entrants than incumbents.

Large exit subsidies or buyouts for low energy productivity incumbents might result in a higher

productivity threshold for exit than for entry, which would result in the opposite sign for our

estimated entry-year energy price elasticities.
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B Data

This section provides details on data sources and construction of the primary variables.

We impose several sample restrictions on the measures of firms’ inputs and outputs in the

ASM and CMF to reduce measurement error. These restrictions closely follow those imposed in

other papers using the ASM and CMF (e.g., Ganapati et al., 2020). First, we drop observations

for which electricity prices, electricity intensity, capital investment, revenue, labor costs, materials

costs, electricity expenditures, or raw fuels expenditures are missing or negative. Second, we ex-

clude observations for which electricity prices, revenue, labor costs, materials costs, or electricity

expenditures are equal to 0. Third, we exclude imputed administrative records. Fourth, since some

observations still appear to be errors, we drop outliers that have capital stocks, revenue, labor costs,

materials costs, electricity expenditures, or raw fuels expenditures that exceed 100 times the 99th

percentile of the distribution of these variables. Finally, we exclude observations with electricity

prices that are more than ten times or less than one-tenth of the annual median price.

We calculate annual plant-level electricity prices using plants’ reported electricity expenditures

and purchased quantities from the ASM and CMF, but we do not always observe plants’ initial

energy prices since only a subset of plants are surveyed in their year of entry. We match plants

to their own initial electricity prices using unique plant identifiers where possible. If a plant is

not observed in its first year of operations, then we impute its initial electricity price using the

average of entrants in the same year, state, and six-digit NAICS industry. For a small number of

plants, we use the average of entrants in the same year and state since there are no other entrants

in the same industry in the plants’ state and year. We also use these year × state × industry

(or alternatively year × state) electricity prices to define the electricity prices in the year before

a plant enters because we don’t have plant-level electricity prices available before a plant opens.

We consider that a plant opens during a period of increasing electricity prices if the state average

electricity price in its entry year is greater than in the year prior to its entry.

We use the MECS and ASM Fuels Trailers to calculate measures of energy intensity of production

that include other energy sources in addition to electricity. The ASM and CMF include information

on total expenditures on raw fuels, but don’t include information on how these costs are split
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between fuels or what quantities are consumed of each. This breakdown is available in the MECS

every three years 1985-1994 and every four years 1994-2014 and in the ASM Fuels Trailers for the

years 1976-1981. In these surveys, we convert quantities of raw fuels consumed to British thermal

units (BTU) using conversion factors from the EIA and to CO2 using data from the EIA where

possible and from the EPA for crude oil, biomass, blast furnace gas, coke oven gas, waste gas,

and acetylene. We calculate the industry × year BTU and CO2 consumed per dollar of raw fuels

expenditure, weighting by the survey weights provided. Expenditures on raw fuels are deflated to

2011 dollars using the industry’s annual average energy deflator from the NBER-CES Productivity

Database. We exclude fuels used as feedstocks and process emissions in these calculations (Lyubich

et al., 2018). We also exclude “by product” fuels that aren’t associated with well-defined CO2 and

BTU conversion factors.

We use these industry average measures of energy consumed per dollar of energy expenditures

to calculate the total BTU and CO2 implied by each plant’s raw fuels expenditures in the ASM

and the CMF. To do so, we merge the raw fuels coefficients with the ASM and CMF, and linearly

interpolate the coefficients in the missing years separately for each industry. We replace resulting

negative coefficients by 0 for 1% of observations; in these cases, all energy consumed comes from

electricity. We then calculate the BTU and CO2 embodied in raw fuels as the annual industry

average energy coefficient times expenditure on raw fuels in the ASM and CMF, and we calculate

the BTU and CO2 embodied in electricity consumption at the plant level using quantities reported

in the ASM and MECS. The conversion factors for mWh of electricity to BTU comes from the EIA

and the conversion factors for mWh to kg of CO2 come from the EPA’s eGRID, which includes

separate emissions factors by state that consider the energy mix of each state’s electricity grid.

These estimates of BTU and CO2 embodied in energy inputs allow us to calculate measures of

BTU and CO2 per dollar of revenue; these alternative measures of energy intensity complement our

use of electricity consumed per dollar of revenue in the regression analysis. Since some observations

are obvious outliers, we trim the BTU and CO2 intensities that exceed the 99th percentile of the

distribution of values. Our energy intensities are comparable to estimates in the literature. For

example, the average CO2 intensity of manufacturing that we calculate is within 15% of estimates

from Lyubich et al. (2018) using the same MECS year. Once we account for excluded “by product”
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fuels, our estimates of electricity as a share of total thermal energy consumed are also comparable

to industry averages (DOE, 2006).

A final note about this imputation process is that the ASM Fuels Trailers include substantially

less detail than the MECS. Raw fuels are presented at much higher levels of aggregation (e.g.,

aggregate coal consumption, rather than consumption of different types of coal) and several fuels

are grouped into an “others” category, which we exclude. We therefore present results in Appendix

Tables A.7 and A.8 using only the MECS to impute energy consumption from raw fuels and results

using both the MECS and ASM Fuels Trailers. We find very similar results using both approaches.

C Imputation of Missing Capital Stocks

Capital stocks are a necessary input into the production function estimation, but unlike other inputs

are not measured every year. Capital stocks are measured in the CMF in years ending in 2 or 7,

and capital investment is measured in both the CMF and, in the intervening years, in the ASM.

To obtain estimates of capital stocks in all years, we first calibrate the depreciation rate δ using

plants which we observe every year between Censuses. Approximately 12,000 plants are surveyed

in the ASM every year between the two most recent Censuses in our sample period (i.e., 2002 and

2007). We iteratively apply the law of motion of capital Ki,t+1 = (1 − δ)Ki,t + Ii,t to back out

the depreciation rate implied by beginning capital stock Ki,t and ending capital stocks Ki,t+1 and

intervening path of investment Ii,t. Specifically, for each plant i we solve:

K2007 = (1− δ)5K2002 + (1− δ)4I2002 + (1− δ)3I2003 + (1− δ)2I2004 + (1− δ)I2005 + I2006 (12)

We calculate an average depreciation rate of 8% across all plants.

We then use this depreciation rate to recursively calculate capital stocks in the years between

Censuses using the law of motion of capital combined with observed investment in the ASM. Specif-

ically, for plants surveyed in the years before and after a Census, we obtain their capital stock using

investment from the ASM in those years combined with depreciation. We recursively apply the

same approach to plants observed two years before and after a Census. A small number of capital
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stocks are still missing after applying this procedure. We predict these values using the interaction

of (log) total value of shipments with six digit NAICS industry codes. Our results are robust to

excluding these observations as well.

D Bartik Instruments and Identification

This section comprises a more detailed discussion of testing the validity of the identifying assumption

underlying our Bartik-style shift-share instruments.

As Section 5 describes, our instrumental variables analysis uses an exposure design that isolates

plausibly exogenous variation in electricity prices using states’ differential exposure to national

changes in the prices of raw fuels (e.g., coal, natural gas, petroleum), where the weights are the

shares of electricity generated using each of these fuels. Goldsmith-Pinkham et al. (2020) show

that such a research design requires exogeneity of the shares for the identifying assumption to

hold because the Bartik instrument is numerically equivalent to a GMM estimator using shares as

instruments. As a consequence, our identifying assumption in equation (4) is valid if the state fuel

generation shares are uncorrelated with shocks leading to changes in the energy intensity outcomes.

The potential concern in our setting is centered on whether state fuel generation shares might be

correlated with other shocks to plants’ input mix that affect energy intensity directly, rather than

through electricity prices. For example, if fuel generation shares are correlated with the availability

of skilled labor, then we might be concerned that the instruments are correlated with unobserved

shocks to labor inputs, and thus that the identifying assumption (4) would be violated.

We assess the validity of our research design by analyzing whether state characteristics that could

be correlated with other input shocks also predict state fuel generation shares (Goldsmith-Pinkham

et al., 2020). Appendix Table A.4 reports the results from regressing the shares of electricity

generated using coal, natural gas, and petroleum on state characteristics plausibly related to in-

put availability (e.g., unemployment rate, share college educated) and output demand (e.g., mean

household income). Reassuringly, this now standard test yields no systematic correlation between

the shares and these characteristics, which supports the validity of the research design.40

40We report what we consider more conservative estimates of the significance of these correlations that do not
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Though average input prices will affect electricity prices, an alternative instrument could replace

the current weights in our instrument based on the shares of electricity generated from different fossil

fuels with the proportion of the year that any given fuel is marginal; in this reweighted instrument,

state exposure to national fossil fuel prices would then be determined by the relative contribution of

different fuels to marginal generation, rather than the share of total generation. Data on marginal

fuels are reported at the regional transmission network level that typically comprise several states,

and different fuels might be marginal at different times of day, or within the same five-minute

interval; the marginal fuel is determined by a combination of load and relative fuel prices, making

these alternative weights endogenous to demand in our regressions (Holland et al., 2022).

E Production Function Estimation

This section provides additional details about the estimation of energy-augmenting productivity

ωE
it and total factor productivity ωH

it . As in Ackerberg et al. (2015), estimation proceeds based on

moment conditions formed by the evolution of these two productivity shocks. We assume that both

productivity shocks follow AR(1) processes:

ωH
it = αH + βHω

H
it−1 + ξHit

ωE
it = αE + βEω

E
it−1 + ξEit

where the productivity shocks ξHit and ξEit are unknown by plants at time t − 1, and therefore

uncorrelated with lagged inputs.

We estimate the model separately for each industry as follows. First, we take candidate pa-

rameters of the production technology, θ̂ = (σ, ν, βK), for each four-digit NAICS industry and use

this initial guess to recover the productivities ωH
it , ω

E
it from each plant’s input choices in each year.

Second, we estimate the parameters of the AR(1) processes by ordinary least squares to obtain the

adjust for the multiple hypotheses that we are testing.
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productivity innovations ξHit and ξEit . Third, we form moments based on these innovations:

E[ξHit Zit] = 0

E[ξEitZit] = 0

where Zit are a set of instruments. The timing of decisions and the Markov structure for produc-

tivity shocks imply that all past input choices are uncorrelated with the productivity innovations

ξHit and ξEit , allowing us to use lagged (log) inputs, lit−1, eit−1, and kit−1, and lagged wage and

electricity prices, wit−1 and pEit−1 as instruments. This forms a total of 10 moments, collected in

the vector g(Xj, θ), where j flattens the time and plant indices. These lagged-input instruments,

and the identifying assumption that past inputs and prices are determined before and do not affect

the unanticipated innovations to productivity, are standard in the production function literature

(Ackerberg et al., 2015; Doraszelski and Jaumandreu, 2018; Olley and Pakes, 1996).

Finally, we obtain estimates θ̂ and standard errors using the two-step generalized method of

moments (GMM) estimator (Hansen, 1982). We minimize the objective function:

C(θ, ·) =

(
1

N

N∑
j=1

g(Xj, θ)

)′

Ŵ

(
1

N

N∑
j=1

g(Xj, θ)

)

where g(Xj, θ) are 10x1 vectors defined above and the weight matrix Ŵ is the inverse covariance

matrix obtained using the initial parameters θ̂0 from the minimization of the objective function

using the identity matrix as the weight matrix.

F Robustness of Instrumental Variables Analysis

F.1 Energy Intensity

Appendix Table A.7 shows that the sign, magnitude, and precision of the main estimates are robust

to the use of different covariates, weightings, and data subsamples. For comparison, Panel A

reproduces the main estimates of lock-in based on equation (2) and shown in Table 3.
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Panels B, C, and D show that both initial and current electricity prices elasticities are robust

to the use of different covariates. Panel B presents results that are almost identical using higher-

level fixed effects, which suggests that variation at the year × first year × industry level does not

confound the estimates. Panel C includes state × year time trends, which allow for differential

energy efficiency trends by state over time. The results again are comparable, with a small increase

in the magnitude of the point estimates. Panel D includes plant labor hours worked, capital stock,

and materials costs as covariates in the regressions to better capture plant characteristics, and finds

estimates that are virtually identical to our main ones, though we exclude these plant characteristics

from our main regression analysis since they themselves may be outcomes of changes in energy prices.

Panel E presents estimates that are not weighted by the Census sampling weights to create a

representative sample. Since the ASM oversamples large plants, these plants are assigned higher

weight in these regressions relative to the main estimates. The initial price elasticity falls by

approximately one-third, suggesting that lock-in is not just driven by large plants, while the sign

and significance are generally unchanged.

Panels F, G, and H show estimates using different subsamples of the data. Panel F linearly

interpolates CO2 and BTU values from the MECS only, rather than the MECS and the ASM

Fuels Trailers. The MECS contains approximately five times as many energy categories as the

ASM Fuel Trailers, but imputing the ASM years using the MECS barely changes the estimated

effect of electricity prices on CO2 and BTU intensities at all (Columns 3 and 4). Panel G excludes

years in which the ASM Fuels Trailers and the MECS are not collected. This skews the analysis

sample toward the early years of the data since the ASM Fuels Trailers were collected every year

between 1976 and 1981, while the MECS is subsequently collected every three or four years. The

lock-in estimates are larger as a result: the effects of entry-year electricity prices on electricity, CO2,

and BTU intensity all increase by approximately one-third. The change in the magnitude of the

parameter estimates is the result of the changing time period, rather than the imputation, since the

electricity intensities are never imputed. The parameter estimates in Panel H, which include only

years where the MECS is collected, skew the data toward later years and are closer to the main

estimates.

Panel I uses state-level average current and initial electricity price data from SEDS, rather
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than price estimates calculated from the ASM and CMF. In this case, the initial electricity price

elasticities are slightly larger but statistically indistinguishable from our main estimates, reflecting

the fact that our main measures of initial electricity prices are themselves state × industry × entry

year averages for a majority of plants due to the lack of observed entry years for all. The current

electricity price elasticities are smaller, suggesting that plants respond less to the component of

prices common to all plants in the state and are more highly responsive to changes in their own

price.

F.2 Productivity

Appendix Table A.8 shows alternative estimates of the effects of initial and current electricity

prices on productivity. We analyze the same models as in Appendix Table A.7 using relative energy

productivity and total factor productivity as outcome variables, and we find again find results

that are consistent with the main estimates in Table 5. We reproduce these results in Panel A of

Appendix Table A.8 for comparison.

Panels B, C, and D use different covariates than the models in the main text. We find esti-

mates that are similar in sign, magnitude, and precision to the main estimates using higher level

fixed effects (Panel B), using state × year time trends (Panel C), and when including plant-level

covariates (i.e., labor hours worked, capital stock, and materials costs) (Panel D). The magnitude of

contemporaneous electricity prices for relative energy intensity increases slightly with the inclusion

of state × year trends, suggesting that there may be some differential trends in energy productivity

between states, though the estimates are not statistically different from each other. Meanwhile,

the entry-year lock-in estimates of the effects of initial electricity prices on electricity intensity are

almost entirely unchanged, as are the effects of both initial and contemporaneous prices on total

factor productivity.

The estimates in Panel E are unweighted by Census sampling weights. As discussed above, the

ASM oversamples large plants; the regression estimates again are similar or, in the case of relative

energy productivity, slightly larger, suggesting again that the lock-in estimates are not driven by

large plants, or by reweighting.
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Panels F, G, and H show estimates using different subsamples of the data. Panel F linearly

interpolates CO2 and BTU values from the MECS only, rather than the MECS and the ASM

Fuels Trailers. As discussed above, the MECS contains approximately five times as many energy

categories as the ASM Fuel Trailers, but imputing the ASM years using the MECS barely changes

the estimated effect of electricity prices on CO2 and BTU intensities at all (Columns 3 and 4).

Since the relative energy intensity estimates don’t use imputed CO2 or BTU values, this sample

is equivalent to the main sample for these productivity models, though is different in the case of

Appendix Table A.7.

Panel G excludes years in which the ASM Fuels Trailers and the MECS are not collected.

This skews the analysis sample toward the early years of the data since the ASM Fuels Trailers

were collected every year between 1976 and 1981, while the MECS is subsequently collected every

three or four years. The lock-in estimates again are similar in sign, magnitude, and precision,

while the importance of contemporaneous electricity prices falls slightly, perhaps as a result of

fewer intervening years between the measurement of initial and current prices. This same pattern

is evident in Panel H, which excludes ASM Fuel Trailer years from the Panel G sample, though

overall the results are quantitatively and qualitatively similar in all models.

Panel I uses state-average electricity prices from SEDS in the place of the price estimates based

on the ASM and CMF. The initial electricity price elasticities for the energy productivity outcomes

are very similar in sign, magntitude, and precision to the main results. These results make sense

given the use of state × industry × entry year average electricity prices for plants for whom we

don’t observe entry year electricity prices. The current electricity price elasticities again are smaller

and less precisely estimated than the main results, reflecting the fact that the state-level average

prices contain substantially less variation than the plant-level current electricity prices. All of the

total factor productivity elasticities are very comparable.
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G Electricity Price Effects on Other Manufacturing Out-

comes

This section discuss the effects of initial electricity prices on manufacturing outcomes other than

energy intensity and energy productivity.

Panel A of Appendix Table A.6 reports the effects of initial electricity prices on the amounts

of electricity used, CO2 produced, and BTU consumed, rather than the more standard intensity

amounts measured per dollar of revenue (e.g., Lyubich et al., 2018). These results are similar in

sign and magnitude to the main energy intensity estimates, though in some instances are somewhat

less precisely estimated. These estimates are again consistent with lock-in: plants use a greater

quantity of all of these energy measures when they begin operations in a low energy price year. The

magnitudes of the effects on energy quantities can again be explained by the persistent effect on

relative productivity, shown in Table 5.

Panel B reports effects on other manufacturing inputs. The effects of initial electricity prices

on labor hours, capital outlays, materials costs (excluding energy), and revenues are generally

statistically insignificant, with the exception of a weakly positive effect on capital. These findings

suggest that while initial electricity prices have important effects on future energy inputs, they have

a limited effect on other non-energy inputs. In particular, higher entry-year energy costs appear

unlikely to lead to widespread unemployment for plants that continue to operate when energy

prices rise, though the effects on employment at plants that potentially fail to open should be an

important consideration in a macroeconomic analysis of the counterfactual effects of pricing carbon

in a plant’s entry year. These findings also suggest that the effects of entry-year energy prices on

energy intensity (i.e., energy use per dollar revenue) are driven by the changes in energy use in Panel

A, rather than changes in revenue in Panel B: the effect of entry-year electricity prices on revenues

is statistically insignificant and the point estimate is less than one-quarter of the magnitude of the

effect on energy use levels.
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H Heterogeneous Lock-In Across Industries

Appendix Table A.9 studies how the effects of entry-year electricity prices differ by industry, for

eleven major industry groups analyzed by Doraszelski and Jaumandreu (2018). The estimates in

this table are based on equation (2) with the addition of a log entry-year electricity price × industry

dummy, where the industry dummy takes the value 1 if a plant is in the industry specified in each of

the panels. The summary statistics in Appendix Table A.2 describes these industry groups in more

detail and shows that they differ in their average energy use. We analyze heterogeneous effects on

our main energy intensity outcomes (i.e., electricity intensity, CO2 intensity, and BTU intensity) in

Columns 1-3 respectively and on relative energy intensity and total factor productivity in Columns

4 and 5.

The main take-away from this analysis is that lock-in is not driven by any one industry group and

appears to exist in all of them, though the results are imprecisely estimated. The interaction term

in each panel measures the differential effect of entry-year electricity prices on the energy outcomes

in the focal industry in each panel. This point estimate is small in general, imprecisely estimated

in most instances, and never negates the importance of entry-year electricity prices for determining

subsequent energy outcomes. However, the interaction terms are sufficiently imprecisely estimated

that a Wald test of the null hypothesis that the sum of the effects of entry-year prices and the

interaction between entry-year prices and the industry indicator fails to reject the null of no lock-in

for most industries. In no industry do we find meaningful effects on total factor productivity.
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I Figures and Tables

Figure A.1: Simulated Lock-In Under Alternative Plant Expectations

Panel A: Perfect Foresight About Future Energy Price Changes
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Panel B: Unanticipated Future Energy Price Changes
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Notes: This figure shows simulation results for the energy intensity of incumbent manufacturing plants relative to

entrants as a function of their entry-year energy price. The x-axis shows initial energy price as a fraction of the

current price. Panel A shows energy intensity assuming that plants have perfect foresight regarding future energy

price changes. Panel B shows energy intensity assuming that all energy price changes are unanticipated by plants.

“Fixed capital” shows relative energy intensity in scenarios where plants cannot adjust their capital stocks after they

enter. “Adjustment costs” shows relative energy intensity in scenarios where incumbents can re-optimize their capital

stock subject to fixed and convex adjustment costs. “Flexible capital” shows relative energy intensity in scenarios

where all inputs can be re-optimized without adjustment costs. Energy intensity of entrants is normalized to 1.
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Figure A.2: Time Series of Shares of Fossil Fuels used in Electricity Generation
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Notes: This figure shows the time series of the fraction of British thermal units (BTU) of electricity generated by

coal, natural gas, and petroleum oil in the United States.

Figure A.3: Time Series of Fuel Prices
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Notes: This figure shows the time series of average coal, natural gas, and petroleum oil prices paid by electric utilities.

Prices are in 2011 dollars per million British thermal units (BTU) of fuel.
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Figure A.4: Share of Electricity Generated by Coal, Natural Gas, and Petroleum Oil in 1976
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Notes: This figure shows the fraction of total British thermal units (BTUs) of electricity generated from coal, natural

gas, and petroleum oil in each state in 1976. Shares need not add up to 1 due to the presence of other fuel sources

(e.g., nuclear, hydro).
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Figure A.5: Change in Share of Electricity Generated by Coal, Natural Gas, and Petroleum Oil,
1976-2011
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Notes: This figure shows the change in the fraction of total British thermal units (BTUs) of electricity generated

from coal, natural gas, and petroleum oil in each state between 1976 and 2011.
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Table A.1: Summary Statistics

All Industries Elec-Intensive Industries
(1) (2)

Current Year 1997 1997
(8.595) (8.540)

Entry Year 1988 1988
(8.894) (8.760)

Plant Age (years) 9.243 9.297
(8.000) (7.997)

Current Electricity Price ($ per kWh) 0.087 0.085
(0.036) (0.034)

Initial Electricity Price ($ per kWh) 0.088 0.088
(0.032) (0.030)

Cost of Purchased Electricity (1000$) 275.4 203.4
(2065) (958)

Quantity of Purchased Electricity (1000 kWh) 4411 3175
(51160) (22430)

Electricity Intensity (kWh per $ revenue) 0.196 0.208
(0.500) (0.500)

CO2 Intensity (kg per $ revenue) 0.122 0.132
(0.469) (0.519)

BTU Intensity (million BTU per $ revenue) 0.001 0.002
(0.006) (0.007)

N 1294000 955000

Notes: This table shows variable means for U.S. manufacturing plants. Electricity-intensive industries are industries

for which electricity accounts for at least 70% of total energy expenditures. Observation counts are rounded in

accordance with Census disclosure requirements. All dollar values are in USD (2011). Standard errors are in

parentheses.
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Table A.2: Industry Group Summary Statistics

Industry Group Name NAICS codes Electricity Intensity CO2 Intensity BTU Intensity N
(1) (2) (3) (4) (5) (6)

Metals and Metal Products 331, 332 0.1683 0.1055 0.0012 254000
(0.4004) (0.3244) (0.0050)

Non-Metallic Minerals 324, 327 0.1563 0.1063 0.0020 100000
(0.3669) (0.3261) (0.0082)

Chemical Products 325, 326 0.3045 0.1669 0.0016 154000
(0.8472) (0.5311) (0.0059)

Agricultural Machinery 333 0.1161 0.0976 0.0013 120000
(0.2287) (0.3736) (0.0068)

Electrical Goods 334, 335 0.4902 0.1624 0.0017 100000
(2.115) (0.7404) (0.0075)

Transportation Goods 336 0.1299 0.0812 0.0009 64000
(0.3192) (0.2612) (0.0040)

Food, Drink, and Tobacco 311, 312 0.1535 0.0935 0.0011 110000
(0.3434) (0.3341) (0.0051)

Textile, Leather, and Shoes 313, 314, 315, 316 0.2539 0.1041 0.0013 117000
(0.4157) (0.2864) (0.0045)

Timber and Furniture 321 0.1666 0.2725 0.0032 139000
(0.3278) (0.9104) (0.0111)

Printing and Paper Products 322, 323 0.1402 0.0578 0.0005 155000
(0.2603) (0.1192) (0.0011)

Miscellaneous Manufacturing 339 0.0988 0.05272 0.0006 76000
(0.2551) (0.2501) (0.0041)

Notes: This table shows average electricity intensity (kWh per dollar revenue), carbon dioxide intensity (kg per dollar

revenue), and BTU intensity (million British Thermal Units (BTU) per dollar revenue) for eleven major industry

groups. NAICS codes are three-digit North American Industry Classification System codes. Observation counts are

rounded in accordance with Census disclosure requirements. All dollar values are in USD (2011). Standard errors

are in parentheses.
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Table A.3: Entry and Exit Summary Statistics

All Industries Elec. Intensive Industries
(1) (2)

Entrant Fraction 0.078 0.077
(0.269) (0.266)

Exit Fraction 0.004 0.004
(0.060) (0.060)

Observations per Plant 4.594 4.466
(4.765) (4.466)

Plant Age 9.243 9.297
(8.00) (7.997)

Age at Exit 14.960 15.010
(9.150) (9.142)

Notes: This table shows summary means for plant entry and exit behavior. Entry and exit fractions

are the shares of total plant-year observations in our sample that are entrants or exiters, respectively.

Plant age and age at exit are measured in years. Column 1 shows means across all industries and column

2 shows means for electricity-intensive industries. Observation counts are rounded in accordance with

Census disclosure requirements. Standard errors are in parentheses.
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Table A.4: Relationship between Fuel Generation Shares and State Characteristics

Coal Share Natural Gas Share Petroleum Share
(1) (2) (3)

Unemployment Rate -0.022 -0.039∗ -0.001
(0.033) (0.022) (0.023)

State Per Capita Income (1000s) 0.005 0.048 0.034
(0.043) (0.029) (0.029)

Mean Household Income (1000s) -0.001 -0.000 0.001
(0.001) (0.001) (0.001)

Share Any College Education -0.030∗ -0.015 0.007
(0.016) (0.011) (0.011)

Share White 0.008 0.001 -0.009∗

(0.007) (0.005) (0.005)

Share Black 0.004 0.003 -0.003
(0.007) (0.005) (0.005)

Population (1000s) -0.004 0.005 0.001
(0.010) (0.007) (0.007)

Household Size 0.506 0.517 -0.215
(0.673) (0.454) (0.458)

Dep. Var. Mean (1980) 0.45 0.12 0.16

Dep. Var. Mean (1976) 0.40 0.12 0.21

R-square 0.266 0.154 0.443
N 51 51 51
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the correlation between state fuel shares in electricity generation and state

characteristics in 1980. Standard errors are in parentheses.
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Table A.5: Estimated Production Function Parameters

All Industries Elec. Intensive Industries
(1) (2)

Returns to scale ν 0.620 0.679
(0.292) (0.256)

Elasticity of substitution σ 0.260 0.237
(0.195) (0.186)

Capital productivity βK 3.411 3.498
(2.200) (2.220)

N 1294000 955000
Notes: This table shows the estimated production function parameters. Column 1 shows mean parameter

estimates across all industries and column 2 shows means for electricity-intensive industries (i.e., industries

for which electricity accounts for at least 70% of total energy expenditures). Observation counts are

rounded in accordance with Census disclosure requirements. Standard errors are in parentheses.
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Table A.6: Effects of Initial and Current Electricity Prices on Manufacturing Outcomes

(1) (2) (3)
Panel A: Energy Inputs (Levels)

log(Quantity Electricityi,t) log(Total CO2i,t) log(Total BTUi,t)
log(Current Electricity Pricei,t) -0.308∗ -0.373∗∗ -0.305∗

(0.170) (0.183) (0.178)

log(Initial Electricity Pricei,t0) -0.240∗ -0.364∗∗∗ -0.218∗

(0.133) (0.112) (0.124)

Panel B: Other Manufacturing Inputs and Outputs
log(Labor Hoursi,t) log(Materials Costsi,t) log(Capital Investmenti,t) log(Revenuei,t)

log(Current Electricity Pricei,t) 0.470∗∗∗ 0.421∗ 0.391 0.456∗∗

(0.153) (0.239) (0.287) (0.199)

log(Initial Electricity Pricei,t0) -0.109 -0.136 0.434∗ -0.075
(0.124) (0.146) (0.247) (0.140)

K-P F stat 12.1 12.1 12.1 12.1
N 1294000 1294000 1294000 1294000

Industry × Year × Entry Year FE Yes Yes Yes Yes
Industry × State FE Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: All models are estimated using IV. Initial and contemporaneous electricity prices are instrumented using

initial and contemporaneous prices for coal, natural gas, and petroleum, weighted by the share of each fuel in state

electricity generation. Electricity prices are measured in dollars per kWh, labor inputs in hours, materials costs,

capital investment, and revenue in 1000s, quantity of electricity purchased in 1000 kWh, quantity CO2 produced in kg,

and quantity BTU consumed in million BTU. Regressions are weighted using Census sampling weights. Observation

counts are rounded in accordance with Census disclosure requirements. All dollar values are in 2011 USD. Standard

errors clustered by state are in parentheses.
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Table A.7: Effects of Initial and Current Electricity Prices on Energy Intensity

log(Electricity Intensityi,t) log(Electricity Intensityi,t) log(CO2 Intensityi,t) log(BTU Intensityi,t)
Elec-Intensive Industries

(1) (2) (3) (4)
Panel A: Main Results
log(Current Electricity Pricei,t) -0.764*** -0.734*** -0.829*** -0.761***

(0.090) (0.104) (0.072) (0.087)
log(Initial Electricity Pricei,t0) -0.165*** -0.232*** -0.289*** -0.144**

(0.051) (0.059) (0.079) (0.059)
K-P F stat 12.1 11.9 12.1 12.1
N 1294000 955000 1294000 1294000

Panel B: Year × Industry, First Year × Industry, State × Industry FE
log(Current Electricity Pricei,t) -0.770*** -0.726*** -0.831*** -0.763***

(0.097) (0.106) (0.080) (0.095)
log(Initial Electricity Pricei,t0) -0.178*** -0.226*** -0.319*** -0.186***

(0.051) (0.070) (0.074) (0.057)
K-P F stat 9.7 10.2 9.7 9.7
N 1294000 955000 1294000 1294000

Panel C: State × Year Trends
log(Current Electricity Pricei,t) -0.958*** -1.033*** -1.003*** -1.053***

(0.127) (0.144) (0.081) (0.129)
log(Initial Electricity Pricei,t0) -0.219*** -0.311*** -0.218*** -0.206***

(0.062) (0.075) (0.062) (0.059)
K-P F stat 11.9 11.3 11.9 11.9
N 1294000 955000 1294000 1294000

Panel D: Plant Covariates
log(Current Electricity Pricei,t) -0.750∗∗∗ -0.723∗∗∗ -0.816∗∗∗ -0.750∗∗∗

(0.083) (0.102) (0.069) (0.082)
log(Initial Electricity Pricei,t0) -0.178∗∗∗ -0.239∗∗∗ -0.301∗∗∗ -0.156∗∗∗

(0.049) (0.060) (0.077) (0.057)
K-P F stat 11.8 11.5 11.8 11.8
N 1294000 955000 1294000 1294000

Panel E: Unweighted
log(Current Electricity Pricei,t) -0.821*** -0.809*** -0.883*** -0.827***

(0.044) (0.044) (0.045) (0.041)
log(Initial Electricity Pricei,t0) -0.109** -0.153** -0.172*** -0.074

(0.052) (0.067) (0.059) (0.045)
K-P F stat 11.6 10.8 11.6 11.6
N 1294000 955000 1294000 1294000

Panel F: Impute CO2, BTU from MECS only
log(Current Electricity Pricei,t) -0.764*** -0.734*** -0.811*** -0.786***

(0.090) (0.104) (0.085) (0.085)
log(Initial Electricity Pricei,t0) -0.165*** -0.232*** -0.193*** -0.152**

(0.051) (0.059) (0.068) (0.063)
K-P F stat 12.1 11.9 12.1 12.1
N 1294000 955000 1294000 1294000

Panel G: Exclude Years with Imputed CO2 and BTU Values
log(Current Electricity Pricei,t) -0.625*** -0.585*** -0.800*** -0.564***

(0.137) (0.161) (0.098) (0.128)
log(Initial Electricity Pricei,t0) -0.368*** -0.451*** -0.715*** -0.256**

(0.091) (0.099) (0.134) (0.106)
K-P F stat 11.1 11.9 11.1 11.1
N 312000 225000 312000 312000

Panel H: MECS Years Only
log(Current Electricity Pricei,t) -0.685*** -0.696*** -0.722*** -0.725***

(0.116) (0.138) (0.107) (0.104)
log(Initial Electricity Pricei,t0) -0.343*** -0.424*** -0.370*** -0.367***

(0.089) (0.125) (0.085) (0.086)
K-P F stat 9.4 10.0 9.4 9.4
N 266000 192000 266000 266000

Panel I: Electricity Prices from SEDS
log(Current Electricity Pricei,t) -0.314*** -0.271** -0.448*** -0.288***

(0.103) (0.117) (0.081) (0.103)
log(Initial Electricity Pricei,t0) -0.234*** -0.278*** -0.295*** -0.231***

(0.041) (0.055) (0.050) (0.041)
K-P F stat 17.6 16.6 17.6 17.6
N 1294000 955000 1294000 1294000
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: All models are estimated using IV. Initial and contemporaneous electricity prices are instrumented using initial

and contemporaneous prices for coal, natural gas, and petroleum, weighted by the share of each fuel in state electricity

generation. Electricity prices are measured in dollars per kWh, electricity intensity is kWh per dollar of revenue,

CO2 intensity is kg CO2 per dollar of revenue, and BTU intensity is BTU per dollar of revenue. Electricity-intensive

industries are industries for which electricity accounts for at least 70% of total energy expenditures. Except for Panel

B, all models include industry × year × entry year fixed effects and industry × state fixed effects. Panel D includes

controls for plant labor hours employed, capital stock, and materials costs. Panel H uses electricity prices from the

Energy Information Administration’s State Energy Data System (SEDS) rather than from the U.S. Census Bureau.

Regressions are weighted using Census sampling weights unless otherwise noted. Observation counts are rounded in

accordance with Census disclosure requirements. All dollar values are in 2011 USD. Standard errors clustered by state

are in parentheses.
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Table A.8: Effects of Initial and Current Electricity Prices on Productivity

log(Energy Productivityi,t) log(Energy Productivityi,t) log(TFPi,t) log(TFPi,t)
Elec-Intensive Industries Elec-Intensive Industries

(1) (2) (3) (4)
Panel A: Main Results
log(Current Electricity Pricei,t) 0.525∗∗∗ 0.673*** 0.088 -0.017

(0.138) (0.139) (0.127) (0.119)
log(Initial Electricity Pricei,t0) 0.349∗∗∗ 0.319∗∗∗ 0.049 0.124

(0.122) (0.126) (0.077) (0.083)
K-P F stat 12.1 11.9 12.1 11.9
N 1294000 955000 1294000 955000

Panel B: Year × Industry, First Year × Industry, State × Industry FE
log(Current Electricity Pricei,t) 0.512∗∗∗ 0.671∗∗∗ 0.136 0.047

(0.169) (0.150) (0.118) (0.113)
log(Initial Electricity Pricei,t0) 0.330∗∗∗ 0.270∗∗∗ 0.021 0.087

(0.100) (0.115) (0.074) (0.098)
K-P F stat 9.7 10.2 9.7 10.2
N 1294000 955000 1294000 955000

Panel C: State × Year Trends
log(Current Electricity Pricei,t) 0.928∗∗∗ 1.109∗∗∗ 0.040 -0.049

(0.295) (0.289) (0.146) (0.126)
log(Initial Electricity Pricei,t0) 0.322∗∗∗ 0.352∗∗∗ 0.089 0.141

(0.140) (0.156) (0.082) (0.093)
K-P F stat 11.9 11.3 11.9 11.3
N 1294000 955000 1294000 955000

Panel D: Plant Covariates
log(Current Electricity Pricei,t) 0.424∗∗∗ 0.553∗∗∗ -0.027 -0.108

(0.114) (0.123) (0.059) (0.074)
log(Initial Electricity Pricei,t0) 0.374∗∗∗ 0.356∗∗∗ 0.090∗ 0.109∗

(0.092) (0.094) (0.049) (0.055)
K-P F stat 11.8 11.5 11.8 11.5
N 1294000 955000 1294000 955000

Panel E: Unweighted
log(Current Electricity Pricei,t) 0.465∗∗∗ 0.589∗∗∗ 0.174 0.059

(0.124) (0.123) (0.105) (0.078)
log(Initial Electricity Pricei,t0) 0.425∗∗∗ 0.412∗∗∗ -0.078 0.017

(0.087) (0.092) (0.049) (0.055)
K-P F stat 11.6 10.8 11.6 10.8
N 1294000 955000 1294000 955000

Panel F: Impute CO2, BTU from MECS only
log(Current Electricity Pricei,t) 0.525∗∗∗ 0.673∗∗∗ 0.088 -0.017

(0.138) (0.139) (0.127) (0.119)
log(Initial Electricity Pricei,t0) 0.349∗∗∗ 0.319∗∗∗ 0.049 0.124

(0.122) (0.126) (0.077) (0.083)
K-P F stat 12.1 11.9 12.1 11.9
N 1294000 955000 1294000 955000

Panel G: Exclude Years with Imputed CO2 and BTU Values
log(Current Electricity Pricei,t) 0.413∗∗∗ 0.421∗∗∗ 0.103 0.049

(0.150) (0.188) (0.099) (0.095)
log(Initial Electricity Pricei,t0) 0.376∗∗∗ 0.557∗∗∗ 0.091 0.132

(0.193) (0.186) (0.102) (0.105)
K-P F stat 11.1 11.9 11.1 11.9
N 312000 225000 312000 225000

Panel H: MECS Years Only
log(Current Electricity Pricei,t) 0.411∗∗∗ 0.415∗∗∗ 0.126 0.122

(0.144) (0.162) (0.090) (0.092)
log(Initial Electricity Pricei,t0) 0.503∗∗∗ 0.573∗∗∗ 0.047 0.097

(0.177) (0.193) (0.101) (0.111)
K-P F stat 9.4 10.0 9.4 10.0
N 266000 192000 266000 192000

Panel I: Electricity Prices from SEDS
log(Current Electricity Pricei,t) 0.185 0.249* 0.014 -0.039

(0.119) (0.139) (0.068) (0.066)
log(Initial Electricity Pricei,t0) 0.313*** 0.313*** 0.079 0.116*

(0.089) (0.112) (0.055) (0.064)
K-P F stat 17.6 16.6 17.6 17.6
N 1294000 955000 1294000 955000
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: All models are estimated using IV. Initial and contemporaneous electricity prices are instrumented using initial

and contemporaneous prices for coal, natural gas, and petroleum, weighted by the share of each fuel in state electricity

generation. Electricity prices are measured in dollars per kWh, energy productivity is the productivity of electricity

relative to labor, and total factor productivity is the productivity common to all manufacturing inputs. Electricity-

intensive industries are industries for which electricity accounts for at least 70% of total energy expenditures. Except

for Panel B, all models include industry × year × entry year fixed effects and industry × state fixed effects. Panel D

includes controls for plant labor hours employed, capital stock, and materials costs. Panel H uses electricity prices from

the Energy Information Administration’s State Energy Data System (SEDS) rather than from the U.S. Census Bureau.

Regressions are weighted using Census sampling weights unless otherwise noted. Observation counts are rounded in

accordance with Census disclosure requirements. All dollar values are in 2011 USD. Standard errors clustered by state

are in parentheses.
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Table A.9: Heterogeneous Effects of Initial Electricity Prices on Energy Intensity by Industry

log(Electricity Intensityi,t) log(CO2 Intensityi,t) log(BTU Intensityi,t) log(Energy Productivityi,t) log(TFPi,t)
(1) (2) (3) (4) (5)

Panel A: Metals and Metal Products
log(Current Electricity Pricei,t) -0.770*** -0.838*** -0.768*** 0.543*** 0.091

(0.092) (0.075) (0.090) (0.137) (0.125)
log(Initial Electricity Pricei,t0) -0.140* -0.286** -0.114 0.313* 0.072

(0.071) (0.111) (0.084) (0.159) (0.078)
log(Initial Electricity Pricei,t0)x1[Industryi] -0.024 0.090 -0.049 -0.029 -0.123

(0.203) (0.233) (0.224) (0.309) (0.093)
K-P F stat 8.1 8.1 8.1 8.1 8.1

Panel B: Non-Metallic Minerals
log(Current Electricity Pricei,t) -0.766*** -0.826*** -0.760*** 0.528*** 0.086

(0.091) (0.073) (0.088) (0.136) (0.127)
log(Initial Electricity Pricei,t0) -0.210*** -0.299*** -0.173** 0.393*** 0.040

(0.053) (0.084) (0.072) (0.117) (0.073)
log(Initial Electricity Pricei,t0)x1[Industryi] 0.496** 0.091 0.300 -0.529 0.106

(0.239) (0.309) (0.323) (0.517) (0.258)
K-P F stat 10.7 10.7 10.7 10.7 10.7

Panel C: Chemical Products
log(Current Electricity Pricei,t) -0.759*** -0.825*** -0.756*** 0.517*** 0.089

(0.088) (0.072) (0.086) (0.143) (0.127)
log(Initial Electricity Pricei,t0) -0.138** -0.260*** -0.112* 0.344*** 0.053

(0.060) (0.082) (0.064) (0.116) (0.078)
log(Initial Electricity Pricei,t0)x1[Industryi] -0.318 -0.323 -0.383 0.026 -0.021

(0.293) (0.304) (0.294) (0.545) (0.164)
K-P F stat 11.7 11.7 11.7 11.7 11.7

Panel D: Agricultural Machinery
log(Current Electricity Pricei,t) -0.764*** -0.834*** -0.765*** 0.525*** 0.086

(0.090) (0.072) (0.087) (0.137) (0.126)
log(Initial Electricity Pricei,t0) -0.166*** -0.295*** -0.159** 0.384*** 0.043

(0.054) (0.078) (0.060) (0.130) (0.079)
log(Initial Electricity Pricei,t0)x1[Industryi] 0.005 0.202 0.345 -0.640 0.156

(0.206) (0.226) (0.215) (0.420) (0.257)
K-P F stat 11.3 11.3 11.3 11.3 11.3

Panel E: Electrical Goods
log(Current Electricity Pricei,t) -0.766*** -0.830*** -0.762*** 0.528*** 0.086

(0.090) (0.072) (0.087) (0.138) (0.127)
log(Initial Electricity Pricei,t0) -0.160*** -0.288*** -0.142** 0.335*** 0.046

(0.051) (0.080) (0.059) (0.124) (0.077)
log(Initial Electricity Pricei,t0)x1[Industryi] -0.055 0.025 -0.011 0.199 0.136

(0.178) (0.173) (0.174) (0.256) (0.209)
K-P F stat 8.7 8.7 8.7 8.7 8.7

Panel F: Transportation Goods
log(Current Electricity Pricei,t) -0.764*** -0.828*** -0.760*** 0.534*** 0.084

(0.090) (0.073) (0.088) (0.137) (0.127)
log(Initial Electricity Pricei,t0) -0.162*** -0.280*** -0.146** 0.338** 0.050

(0.052) (0.080) (0.060) (0.132) (0.078)
log(Initial Electricity Pricei,t0)x1[Industryi] -0.065 -0.220 0.028 0.153 0.027

(0.175) (0.177) (0.175) (0.456) (0.124)
K-P F stat 8.5 8.5 8.5 8.5 8.5

Panel G: Food, Drink, and Tobacco
log(Current Electricity Pricei,t) -0.770*** -0.837*** -0.767*** 0.537*** 0.093

(0.087) (0.070) (0.084) (0.139) (0.124)
log(Initial Electricity Pricei,t0) -0.171*** -0.288*** -0.145** 0.392*** 0.020

(0.056) (0.079) (0.061) (0.125) (0.081)
log(Initial Electricity Pricei,t0)x1[Industryi] 0.094 0.030 0.029 -0.682 0.373**

(0.186) (0.190) (0.170) (0.614) (0.170)
K-P F stat 12.6 12.6 12.6 12.6 12.6

(Continued on Next Page)
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Table A.9: Heterogeneous Effects of Initial Electricity Prices on Energy Intensity by Industry,
Continued

log(Electricity Intensityi,t) log(CO2 Intensityi,t) log(BTU Intensityi,t) log(Energy Productivityi,t) log(TFPi,t)
(1) (2) (3) (4) (5)

(Continued from Previous Page)

Panel H: Textile, Leather, and Shoes
log(Current Electricity Pricei,t) -0.780*** -0.843*** -0.778*** 0.525*** 0.097

(0.086) (0.071) (0.083) (0.137) (0.123)
log(Initial Electricity Pricei,t0) -0.168*** -0.286*** -0.149** 0.294** 0.072

(0.054) (0.079) (0.059) (0.130) (0.085)
log(Initial Electricity Pricei,t0)x1[Industryi] -0.151 -0.180 -0.089 0.896 -0.215

(0.199) (0.220) (0.184) (0.552) (0.288)
K-P F stat 8.5 8.5 8.5 8.5 8.5

Panel I: Timber and Furniture
log(Current Electricity Pricei,t) -0.762*** -0.830*** -0.760*** 0.526*** 0.087

(0.089) (0.071) (0.088) (0.138) (0.126)
log(Initial Electricity Pricei,t0) -0.172*** -0.296*** -0.145** 0.388*** 0.063

(0.048) (0.078) (0.056) (0.132) (0.070)
log(Initial Electricity Pricei,t0)x1[Industryi] 0.053 0.069 -0.002 -0.377 -0.122

(0.147) (0.172) (0.159) (0.275) (0.170)
K-P F stat 8.5 8.5 8.5 8.5 8.5

Panel J: Printing and Paper Products
log(Current Electricity Pricei,t) -0.778*** -0.840*** -0.773*** 0.549*** 0.093

(0.085) (0.069) (0.082) (0.138) (0.125)
log(Initial Electricity Pricei,t0) -0.174** -0.312*** -0.165** 0.318** 0.033

(0.068) (0.080) (0.064) (0.139) (0.078)
log(Initial Electricity Pricei,t0)x1[Industryi] 0.175 0.262 0.246 0.088 0.096

(0.232) (0.242) (0.233) (0.457) (0.165)
K-P F stat 9.2 9.2 9.2 9.2 9.2

Panel K: Miscellaneous Manufacturing
log(Current Electricity Pricei,t) -0.762*** -0.827*** -0.760*** 0.523*** 0.086

(0.090) (0.072) (0.087) (0.139) (0.128)
log(Initial Electricity Pricei,t0) -0.133** -0.263*** -0.113* 0.299** 0.049

(0.050) (0.079) (0.058) (0.129) (0.080)
log(Initial Electricity Pricei,t0)x1[Industryi] -0.510** -0.420* -0.498** 0.817 -0.016

(0.250) (0.246) (0.244) (0.503) (0.248)
K-P F stat 12.8 12.8 12.8 12.8 12.8
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: All models are estimated using IV (N=1294000). Initial and contemporaneous electricity prices are instru-

mented using initial and contemporaneous prices for coal, natural gas, and petroleum, weighted by the share of each

fuel in state electricity generation. The interaction of initial electricity prices with the industry indicator is instru-

mented using the interactions of the same instruments with the industry indicator. Electricity prices are measured

in dollars per kWh, electricity intensity is kWh per dollar of revenue, CO2 intensity is kg CO2 per dollar of revenue,

BTU intensity is BTU per dollar of revenue, energy productivity is the productivity of electricity relative to labor,

and total factor productivity is the productivity common to all manufacturing inputs. All models include industry

× year × entry year fixed effects and industry × state fixed effects. Regressions are weighted using Census sampling

weights unless otherwise noted. Observation counts are rounded in accordance with Census disclosure requirements.

All dollar values are in 2011 USD. Standard errors clustered by state are in parentheses.
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Table A.10: Dynamic Effects of Electricity Prices on Energy Intensity

log(Electricity Intensityi,t) log(Electricity Intensityi,t) log(CO2 Intensityi,t) log(BTU Intensityi,t)
Elec-Intensive Industries

(1) (2) (3) (4)
Panel A: Lagged Initial Electricity Prices
log(Current Electricity Pricei,t) -0.770*** -0.740*** -0.916*** -0.782***

(0.096) (0.119) (0.078) (0.093)

log(Lag1 Initial Electricity Pricei,t0) -0.178*** -0.238*** -0.167*** -0.120**
(0.054) (0.066) (0.062) (0.050)

K-P F stat 12.3 12.0 12.3 12.3
N 1294000 955000 1294000 1294000

Panel B: Increasing v. Decreasing Electricity Prices
log(Current Electricity Pricei,t) -0.765*** -0.728*** -0.845*** -0.764***

(0.094) (0.110) (0.075) (0.093)

log(Initial Electricity Pricei,t0) -0.156*** -0.226*** -0.279*** -0.136**
(0.050) (0.057) (0.077) (0.056)

log(Initial Electricity Pricei,t0)x1[Increasings,t] -0.003* -0.003 -0.002 -0.002
(0.002) (0.002) (0.002) (0.002)

K-P F stat 14.0 13.1 14.0 14.0
N 1294000 955000 1294000 1294000

Panel C: Inter-Year Electricity Prices
log(Current Electricity Pricei,t) -0.897∗∗∗ -0.837∗∗∗ -0.931∗∗∗ -0.920∗∗∗

(0.089) (0.104) (0.109) (0.109)

log(Initial Electricity Pricei,t0) -0.135 -0.141 -0.140 -0.082
(0.123) (0.133) (0.143) (0.136)

log(Mean Inter Y ear Electricity Pricei,t) 0.000 -0.098 -0.147 -0.112
(0.208) (0.252) (0.221) (0.222)

K-P F stat 27.7 26.2 27.7 27.7
N 1061000 785000 1061000 1061000

Industry × Year × Entry Year FE Yes Yes Yes Yes
Industry × State FE Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: All models are estimates using IV. Panel A shows the effects of contemporaneous log electricity prices and

log prices in the year prior to entry on the log of plants’ energy intensity. Panel B shows the effects of contem-

poraneous log electricity prices and the differential effects of entry-year electricity prices depending on if a plant

opens when prices are increasing or decreasing. Panel C shows the effect of contemporaneous log electricity prices,

entry-year log electricity prices, and the log of the mean of electricity prices in the years between entry and the

current year. Electricity prices are instrumented using initial and contemporaneous prices for coal, natural gas, and

petroleum, weighted by the share of each fuel in state electricity generation, the interaction of initial prices with the

increasing indicator is instrumented with the interaction of weighted initial fuel prices with the increasing indicator,

and mean inter-year electricity prices are instrumented with the mean of the contemporaneous instruments over the

years that the mean is taken. Electricity prices are measured in dollars per kWh, electricity intensity is kWh per

dollar of revenue, CO2 intensity is kg CO2 per dollar of revenue, and BTU intensity is BTU per dollar of revenue.

Electricity-intensive industries are industries for which electricity accounts for at least 70% of total energy expen-

ditures. Regressions are weighted using Census sampling weights. Observation counts are rounded in accordance

with Census disclosure requirements. All dollar values are in 2011 USD. Standard errors clustered by state are in

parentheses.
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Table A.11: Dynamic Effects of Electricity Prices on Productivity

log(Energy Productivityi,t) log(Energy Productivityi,t) log(TFPi,t) log(TFPi,t)
Elec-Intensive Industries Elec-Intensive Industries

(1) (2) (3) (4)
Panel A: Lagged Initial Electricity Prices
log(Current Electricity Pricei,t) 0.589*** 0.758*** 0.125 0.026

(0.150) (0.143) (0.121) (0.111)

log(Lag1 Initial Electricity Pricei,t0) 0.264** 0.150 -0.020 0.036
(0.110) (0.110) (0.057) (0.061)

K-P F stat 12.3 12.0 12.3 12.0
N 1294000 955000 1294000 955000

Panel B: Increasing v. Decreasing Electricity Prices
log(Current Electricity Pricei,t) 0.533*** 0.663*** 0.086 -0.019

(0.133) (0.142) (0.119) (0.111)

log(Initial Electricity Pricei,t0) 0.318** 0.303** 0.058 0.133
(0.126) (0.130) (0.075) (0.083)

log(Initial Electricity Pricei,t0)x1[Increasings,t] 0.010*** 0.008** -0.003** -0.004**
(0.003) (0.003) (0.001) (0.002)

K-P F stat 14.0 13.1 14.0 13.1
N 1294000 955000 1294000 955000

Panel C: Inter-Year Electricity Prices
log(Current Electricity Pricei,t) 0.737∗∗∗ 0.910∗∗∗ 0.069 -0.008

(0.212) (0.192) (0.114) (0.133)

log(Initial Electricity Pricei,t0) 0.186 0.272 -0.002 0.115
(0.245) (0.248) (0.109) (0.136)

log(Mean Inter Y ear Electricity Pricei,t) 0.177 -0.014 0.145 0.069
(0.393) (0.381) (0.122) (0.160)

K-P F stat 27.7 26.2 27.7 26.2
N 1061000 785000 1061000 785000

Industry × Year × Entry Year FE Yes Yes Yes Yes
Industry × State FE Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: All models are estimates using IV. Panel A shows the effects of contemporaneous log electricity prices and

log prices in the year prior to entry on the log of plants’ energy productivity relative to labor productivity and

on the log of plants’ total factor productivity. Panel B shows the effects of contemporaneous log electricity prices

and the differential effects of entry-year electricity prices depending on if a plant opens when prices are increasing

or decreasing. Panel C shows the effect of contemporaneous log electricity prices, entry-year log electricity prices,

and the log of the mean of electricity prices in the years between entry and the current year. Electricity prices are

instrumented using initial and contemporaneous prices for coal, natural gas, and petroleum, weighted by the share of

each fuel in state electricity generation, the interaction of initial prices with the increasing indicator is instrumented

with the interaction of weighted initial fuel prices with the increasing indicator, and mean inter-year electricity

prices are instrumented with the mean of the contemporaneous instruments over the years that the mean is taken.

Electricity prices are measured in dollars per kWh, energy productivity is the productivity of electricity relative to

labor, and total factor productivity is the productivity common to all manufacturing inputs. Electricity-intensive

industries are industries for which electricity accounts for at least 70% of total energy expenditures. Regressions

are weighted using Census sampling weights. Observation counts are rounded in accordance with Census disclosure

requirements. All dollar values are in 2011 USD. Standard errors clustered by state are in parentheses.
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