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Abstract

Many governments and institutions use marginal price signals, such as carbon taxes, to
meet emission reduction targets. However, the responses of firms and individuals to these
price signals are often calculated using average prices commonly reported in economic data,
rather than marginal prices. This paper first documents that the marginal price of electricity
paid by manufacturing plants is 50% lower than the average price. To do so, we construct a
novel dataset of both average and marginal electricity prices, and the wedge between these,
using plant-level microdata from the U.S. Census and utility-level electricity rate schedules
for over two hundred utilities. Second, we provide guidance on when average prices are an
appropriate proxy for marginal prices by identifying economic and geographic characteristics
that predict variation in this wedge. Overall, the magnitude of this wedge suggests that the
standard use of average energy prices to calculate responses to carbon taxes may underestimate
the energy price increases needed to meet emissions targets by 50%.
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1 Introduction

Many governments have put policies that change relative energy prices, through carbon pricing or

clean energy subsidies, at the center of their plans to meet emission reduction targets. To set a

carbon price at the level necessary to meet these targets, policymakers require reliable estimates of

how emissions respond to marginal changes in input prices. However, the responses of firms and

individuals to these prices are often estimated using average, rather than marginal, prices. Most

surveys conducted by governments and research agencies, such as the U.S. Energy Information

Administration and by the U.S. Census Bureau, collect data on average energy prices only. Both

academic research and government reports flag that this distinction may reduce the usefulness

of standard data for economic analysis (Boyd and Lee, 2018; Ganapati et al., 2020). However,

the extent to which average and marginal energy prices diverge, and whether this distinction is

economically meaningful, is not well-understood.

This paper provides guidance on when it is appropriate for policymakers to make decisions on

climate policy based on the data on average energy prices that they collect. The divergence between

marginal and average costs is relevant for policy: most academic and policy models use average

price elasticities to predict responses to marginal energy price changes arising from counterfactual

carbon taxes (Nordhaus and Boyer, 2000). In instances where marginal energy prices are below

average prices (due to e.g., transmission costs, bulk discounts, or fixed costs of production), a given

carbon tax represents a larger percentage change in marginal cost. But any behavioral response is

attributed to a smaller change in average costs, leading to overestimates of energy price elasticities

and resulting reductions in energy use. By extension, using these average price elasticities to predict

energy use reductions will underestimate the carbon price needed to meet emissions targets.

Our empirical analysis focuses on quantifying the wedge between average and marginal electricity

prices in the U.S. manufacturing sector and studying the implications for climate policy. This

analysis exploits a panel of plant-level average and marginal electricity prices that we construct

using restricted-access microdata from the U.S. Census and utility-level electricity rate schedules

for over two hundred utilities. Our primary sources of data from the U.S. Census Bureau are

administrative records on annual plant-level inputs and outputs from the Census of Manufactures

(CMF) for the universe of U.S. manufacturing plants in 2017, the most recently available Census

year. The marginal electricity prices come from utility-level industrial rate data contained in the

OpenEI’s Utility Rate Database, which we compiled for all utilities surveyed by the U.S. Department
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of Energy.

Using the combined dataset, we summarize differences in average and marginal electricity prices

and discuss if average prices are an appropriate proxy for marginal prices by identifying economic

and geographic characteristics that predict variation in this wedge. We examine heterogeneity in

the extent to which average prices accurately reflect marginal prices across different geographies,

industries, and plant sizes. If fixed costs and demand charges are important, we expect systematic

differences between large and small plants, with small plants paying higher per unit energy prices,

all else equal. If transmission constraints are important, then we expect heterogeneous prices by

geography, with manufacturing plants that are less subject to transmission bottlenecks obtaining

lower prices. Overall, we identify variables that are indicative of the useful of average energy costs

for policy decisions.

There are two primary findings. First, we document that the marginal price of electricity paid by

manufacturing plants is approximately 50% lower than the average price. This pattern is evident in

aggregate across all manufacturing establishments and also consistent across eleven distinct industry

groups. This result is concerning because it suggests that using average price elasticities to predict

responses to marginal price changes may overestimate responsiveness to a carbon price by 50%.

Given that average price elasticities are typically used in models to predict the behavioral response

to carbon pricing, this result suggests that policymakers should calculate the corresponding change

in average prices resulting from a carbon tax, rather than marginal prices, to obtain more accurate

predictions of its effects. In addition, this result suggests that inefficient demand charges used by

utilities to recover fixed costs are a substantially higher portion of industrial average electricity

prices than has been previously recognized (Borenstein, 2016).

The second main result is that electricity use is the largest predictor of the wedge between

average and marginal electricity prices. Principled variable selection methods using least abso-

lute shrinkage and selection operator (Lasso) regressions reject the informativeness of many other

plant characteristics, including revenue, labor and capital inputs, carbon dioxide intensity of the

local electricity grid, among others (Tibshirani, 1996). This result suggests that while caution is

warranted in using average price elasticities to interpret responses to marginal price changes, the

wedge between average and marginal costs shrinks as electricity use increases. However, we find

that average prices are rarely a good proxy for marginal prices.

These results contribute to three main literatures. To the best of our knowledge, this paper

provides the first estimate of the wedge between average and marginal electricity prices in the
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industrial sector. This result has important policy implications because it suggests that the standard

use of average energy price elasticities to calculate responses to carbon taxes may lead to policies that

are insufficiently stringent to meet emissions targets. Understanding the incentives that industry

faces to reduce their energy use is important in its own right because this sector accounts for

almost all of the predicted increase in U.S. energy use in the next decade (EPA, 2021). This result

contributes to a literature on the responses of households and firms to changes in electricity prices.

Existing work provides estimates of average electricity price elasticities for residential customers

(Alberini and Filippini, 2011; Deryugina et al., 2020; Fell et al., 2014) and industry (Blonz, 2021;

Hawkins-Pierot and Wagner, 2023; Linn, 2008; Paul et al., 2009); these average price elasticities are

used to predict responses to carbon pricing. A smaller literature compares elasticities of marginal

and average electricity prices for residential customers, suggesting that households may respond

to changes in average electricity prices even when the price changes themselves are marginal (Ito,

2014; Shaffer, 2020). Industrial customers are plausibly more attentive to price schedules than

residential customers due to their higher sensitivity to prices and the close attention paid to fuel costs

(Csereklyei, 2020; Hayes and Hafstead, 2020); however, the magnitude of the difference between

average and marginal prices that we find suggests that the distinction may be important.

These results also contribute to the literature on Integrated Assessment Models (IAMs) and

their use in policy analysis. IAMs are climate-economy models that incorporate interactions be-

tween economic activity and the global carbon cycle, and the constraints imposed by policy. Such

models are widely used by national and international government agencies to predict economy-

wide responses to proposed climate policies (e.g., carbon taxes), including the U.S. Environmental

Protection Agency (EPA) and the Intergovernmental Panel on Climate Change (IPCC) (Nordhaus

and Boyer, 2000; Pindyck, 2020). These models are also used in academic and policy research to

calculate the social cost of carbon (Carleton and Greenstone, 2021). Our contribution is to high-

light the importance of carefully considering the model inputs used to simulate the outcomes of

counterfactual climate policy. Specifically, if average price elasticities are used to predict emissions

reductions resulting from carbon pricing, then the carbon prices themselves should be measured

relative to average costs, rather than marginal ones.

Finally, we contribute to a literature on optimal electricity contract design. This literature

studies how electric utilities, which are typically considered natural monopolies, can recover fixed

costs while minimizing deadweight loss. Research dating back to Ramsey (1927) proposes price

discrimination and nonlinear tariffs as one potential solution, but the actual rates implemented
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vary widely in their structure and efficiency (Borenstein, 2016; Borenstein and Bushnell, 2022;

Puller and West, 2013). This research highlights that “economics does not support the use of

demand charges” that bill customers for their hour of peak consumption during a payment cycle

and “it is unclear why demand charges still exist” (Borenstein, 2016, p.5, p.10), and yet we find that

these charges comprise almost half of average prices. We are not aware of any comprehensive effort

to measure the contribution of what are considered inefficient demand charges to overall industrial

electricity prices.

The rest of this paper proceeds as follows. Section 2 provides a brief overview of electricity use

in U.S. manufacturing to contextualize the analysis and Section 3 describes the data and how we

analyze it. Section 4 outlines our main results. Section 5 discusses the implications of our findings

for climate policy.

2 Electricity Contracts and Use in U.S. Manufacturing

2.1 Energy Use in Manufacturing

Manufacturing accounts for about one-quarter of both total U.S. energy consumption and total U.S.

greenhouse gas emissions. Most manufacturing energy is consumed as electricity: in our plant-level

data, electricity expenditures accounted for 75% of total energy expenditures and 95% of thermal

energy consumed.1 Plants’ activities determine the amount and type of energy used. Common uses

include powering production machinery, fueling boilers, on-site transportation, heating, cooling, and

lighting. Improving the energy intensity of these processes often requires replacing energy-inefficient

equipment or machinery, which can involve significant disruption to production. Despite these costs

and frictions, there is strong evidence that manufacturing plants do respond to changes in electricity

prices by changing their operations to become more or less energy intensive (Hawkins-Pierot and

Wagner, 2023; Linn, 2008).

2.2 Electricity Contract Structure

The market for industrial and commercial electricity in the U.S. is complex and there are significant

differences in state regulation. Borenstein and Bushnell (2015) provides a more detailed overview of

1In some industries, fuels such as natural gas are used directly as feedstock materials and not included as energy
sources here. In other industries, such as cement, the production processes themselves emit greenhouse gasses.
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electricity markets in the U.S. Generally, electric utilities have distinct regional markets that cover

one or a few states. The areas served by utilities often but do not always overlap. The median

manufacturing plant in our data has a single utility serving their ZIP code, but the mean number

of available utilities is approximately three.

Economies of scale in electricity distribution require electric utilities to include several com-

ponents in electricity prices above the marginal cost of supplying electricity to recover their total

costs. Electricity contracts often include fixed charges that are independent of electricity quan-

tity purchased, coincident or usage charges that depend on the total electricity used, and demand

charges that depend on the maximum electricity used within each billing period. These charges

may also be nonlinear: utilities often charge a lower price for electricity after usage has exceeded

some threshold. This contract structure drives a wedge between marginal and average electricity

prices.2

Industrial and commercial electricity contracts differ from residential contracts in several ways.

Importantly, while fixed monthly charges are common for residential customers, industrial and

commercial contracts rarely include them because these customers are much more heterogeneous in

size. Tiered pricing is also less common for industrial and commercial customers for the same reason.

Instead, these contracts typically include demand charges based on the highest consumption hour of

the billing cycle, typically one month. These one-time charges are based on the maximum amount

of power required and are in addition to the volumetric charges determined by total consumption

over the billing cycle.3 More aggregate data suggests that, on average, demand charges typically

account for over 30% of an industrial customer’s bill, with the remainder based almost entirely on

volumetric charges; pure fixed charges common for residential customers are typically negligeable for

industrial ones (Borenstein, 2019). To offset the demand charge portion of the bill, the volumetric

rate is typically lower for industrial consumers than residential ones. These demand charges are

intended to approximate a customer’s contribution to the system load, but they are considered

inefficient because a plant’s single highest consumption hour need not be coincident with overall

peak demand periods (Borenstein, 2016).

2In addition, some industrial customers in select states are on direct access or retail choice contracts, so that the
marginal prices that we collect may in fact underestimate the wedge for some industrial customers (NREL, 2017).

3In comparison with a purely volumetric bill, the cost of electricity is now partly driven by peak consumption,
in addition to overall consumption; the demand charge acts as a fixed charge that potentially varies by billing cycle.
As a result, two industrial customers with identical total consumption will pay different amounts for electricity when
the consumption of one is more highly concentrated than the other, say if they run several machines simultaneously
rather than sequentially.

6



3 Data and Methodology

We draw on restricted-use microdata from the U.S. Census Bureau on plant-level manufacturing

inputs and outputs, as well as energy data from publicly available government sources. Additional

data details are in Appendix A.

U.S. Manufacturing Census—Our primary data sources are administrative records on annual

establishment-level inputs and outputs from the Census of Manufactures (CMF) from the U.S.

Census Bureau for the 2017 Census year.4 The CMF is conducted in years ending with 2 or 7 and

surveys all manufacturing plants in the United States. The survey reports quantity of electricity

purchased, in kilowatt-hours, and total expenditures on electricity and other energy sources (e.g.

diesel fuel) separately. We calculate each plant’s annual average electricity price as reported total

electricity expenditure divided by electricity purchased. We validate our calculated average electric-

ity prices against average price data from the Energy Information Administration’s State Energy

Data System (SEDS).5

We supplement the CMF data with information from the Manufacturing Energy Consumption

Survey (MECS). The MECS is a probabilistic survey of approximately 15,000 manufacturing plants

per year, conducted by the U.S. Census Bureau every four years beginning in 1998; we draw on

information from 2018, the closest available year to the 2017 Census. This survey includes more

detailed energy information that is not available in the CMF, including breakdowns of expenditure

on and quantity consumed of fuels other than electricity. We calculate plant-level total carbon

dioxide (CO2) produced and total British thermal units (BTU) of energy consumed by calculating

industry-level CO2 and BTU per dollar of fuel expenditure from the MECS and multiplying by

plant-level fuel expenditure in the CMF.

Electricity Rate Schedules—OpenEI provides a platform for creating, validating, and dissemi-

nating energy data. OpenEI’s Utility Rate Database (URDB) contains rate structure information

from over 200 utilities servicing industrial customers, including over 85% of electricity consumption

in the U.S. It is compiled based on the authoritative list of U.S. utility companies maintained by the

Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). Rate sched-

ules are verified and updated annually by the National Renewable Energy Laboratory (NREL) and

4The U.S. Census Bureau defines an establishment as a single physical location at which business is conducted or
services or industrial operations are performed. For clarity, we use “establishment” interchangeably with “plant.”

5Hawkins-Pierot and Wagner (2023) find energy price elasticities that are similar in sign, magnitude, and precision
using the CMF and using SEDS.
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Illinois State University additionally conducts more frequent quality control checks on behalf of the

DOE; industry experts consider these data to be highly reliable (NREL, 2012).

Using the URDB, we compile the electricity rate schedules available in each ZIP code and match

them to individual plants. Industrial electricity rates may include fixed monthly charges, usage rates

per kilowatt-hour which may vary by season, time of day, or total usage, and demand charges which

generally depend on the maximum usage within a billing cycle. We calculate a manufacturing

plant’s marginal cost of electricity in each year by first matching them to the industrial electricity

rate schedules available in their ZIP code. We then assign them to a marginal usage rate based

on their reported electricity use. For example, in August 2023 Kansas City Power and Light Co.

offered a rate schedule that charges $0.05073 per kilowatt-hour for the first 180 kilowatt-hours,

$0.03579 per kilowatt-hour for the next 180 kilowatt-hours, and $0.02572 thereafter.

In our main analysis, we assume that manufacturing plants choose the lowest cost schedule

based on their usage when multiple schedules are available in their ZIP code and that electricity

usage is smooth across the year and the business day. For robustness, we show that our results

are similar for markets with only one available rate or without seasonal or time-of-day charges. We

then calculate the difference between the plant-level average electricity price reported in the Census

data and the utility-level marginal electricity price available to each plant.

We summarize the distribution of average and marginal electricity prices and the wedge between

them for the universe of manufacturing plants in the U.S., separately for eleven distinct industry

groups, and separately for each state. To capture these distributions and preserve the anonymity of

plants in the data, we present kernel density estimates of plant-level average price, marginal price,

and the wedge trimmed at the 5th and 95th percentiles in accordance with Census disclosure re-

quirements. Motivated by our regression results showing that total electricity usage is the strongest

predictor of the electricity price wedge, we estimate these three kernel densities for the plants above

and below median electricity usage.

We also analyze which plant characteristics are informative about the difference between average

and marginal prices. We use the following regression specification:

(Pavg − Pmarg)isk = Xiskβ + αs + γk + ϵisk

where Xisk includes plant characteristics such as revenue, inputs, energy intensity, and the number

of available utilities, αs and γk are state and industry fixed effects, respectively, and ϵisk is the error
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term, for plant i in industry k and state s. We estimate this specification with both OLS and using

the least absolute shrinkage and selection operator (Lasso) to measure the relationship between

plant characteristics and the average-marginal electricity price wedge. Due to the relatively large

number of potentially informative plant characteristics, we use the commonly used Lasso estimator

to improve efficiency and select the most informative correlates of the electricity price wedge in

a principled way (Zou, 2021). In practice, this machine learning algorithm assesses whether each

variable has additional explanatory power after the other covariates are included.

4 Results

The first key finding is that the marginal price of electricity paid by manufacturing plants is substan-

tially lower than the average price. This pattern is intuitive given that demand and fixed charges

will drive average prices above marginal prices, but the magnitude of the wedge is surprising. Table

1 summarizes the means of the average and marginal prices, as well as the difference between them

and marginal price as a share of the average. Across all plant-years, the mean difference between

the average and marginal price of electricity is 5.16 cents per kWh. This is about half the mean

average price of 9.98 cents per kWh and slightly more than the mean marginal price of 4.82 cents

per kWh. For 80% of plant-years, the marginal electricity price is between 22% and 79% of the

average price reported by that plant.

Figure 1 shows the kernel density estimate of the full distribution of average and marginal

electricity prices across all manufacturing establishments, as well as the difference between the

prices. The figure again highlights that the mean of the distribution of marginal prices is roughly

half of the mean of the distribution of average prices, but also that the distribution of average prices

is almost entirely to the right of the distribution of marginal costs. As a result, the wedge between

average and marginal prices is equal on average to the marginal price itself.

This pattern of substantially higher average electricity prices holds across states and industries.

Figure 3 shows the mean wedge as a share of average electricity prices across plants in each state.

Although marginal prices are closer to average prices in some states, such as Nevada, than others,

the difference varies between 30% and 70% of the average. Appendix Figure A.2 shows that the

magnitude and sign of the wedge between average and marginal prices is similar across eleven

comprehensive industry groups.

There are two main policy implications of the finding that average prices exceed marginal prices

9



by a substantial margin. First, the magnitude of the wedge means that using average price elastic-

ities to predict responses to marginal price elasticities may overestimate energy use reductions by

50%. A given carbon price or clean energy subsidy is a small change in average electricity prices,

but the change in marginal prices is twice as large. This distinction is important for understanding

the magnitude of energy price changes needed to achieve the reductions in energy usage that are

necessary to meet emissions targets. In a standard Dynamic Integrated Climate Economy (DICE)-

like IAM, reducing the initial rate of decarbonization by 50% results in around an additional 0.25◦C

of warming in 2100 (Chikhani and Renne, 2023).6

The importance of the distinction between marginal and average prices can be observed using a

simple example. Since the average price is the average of the marginal price and other, inframarginal

components, we have: pavg = pother+pmarg×q

q
, where q is electricity quantity and we abstract from

tiered pricing for illustration. The observed elasticity with respect to the average price is:

ϵq,pavg =
∂q

∂pavg
× pavg

q
=

 ∂q

∂
(

pother
q

) +
∂q

∂pmarg

×
(
pother + pmarg × q

q

)
× 1

q

=

 ∂q

∂
(

pother
q

)
×

(
pother + pmarg × q

q

)
× 1

q
+

∂q

∂pmarg

× pother
q2

+
∂q

∂pmarg

× pmarg

q

If pavg = 2pmarg and if firms respond only to changes in the marginal price (i.e., ∂q

∂( pother
q )

= 0), then

solving for pother and replacing in the equation above yields ϵq,pavg = 2 ∂q
∂pmarg

× pmarg

q
= 2ϵq,pmarg .

Hence, with the wedge we observe in our data, we would overestimated responsiveness to a marginal

price change by a factor of 2.7

The magnitude of this wedge suggests that demand charges are a significant component of

the total electricity price paid by industry. Demand charges bill industrial customers for their

peak usage during a billing period, as an approximation of their imposition on the grid during

peak times. The usage charge and fixed charge components of prices are small for industrial and

commercial customers, unlike for residential contracts. The goal of these types of charges is to

recover utilities’ fixed costs, which include the costs of building and maintaining the distribution

system, and the common historical solution for industrial customers was to allocate these costs

based on an industrial customer’s maximum demand since the utility had to build the distribution

6This reduction is readily observable by halving the initial decline in carbon intensity in the model of Chikhani
and Renne (2023) that builds on DICE (Nordhaus and Boyer, 2000).

7If ∂q

∂( pother
q )

approaches ∂q
∂pmarg

, the wedge between the elasticities falls.
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network to meet this demand. The importance of demand charges as a share of average electricity

prices is surprising because these charges are considered an inefficient way to recover fixed costs due

to their poor approximation of a customer’s contribution to the need for generation. With today’s

technology, smart meters permit time-varying rate schedules that can efficiently charge customers

for the load that they impose on the grid (Borenstein, 2016).

The second result is that electricity use is the largest predictor of the wedge between average

and marginal electricity prices. Total electricity expenditure is spread over more kWh for higher

utilization manufacturing plants, whether higher utilization is defined in terms of electricity usage

(kWh) or intensity (kWh per dollar revenue). However, principled variable selection methods

using Lasso regressions reject the informativeness of many other plant characteristics, including

revenue, labor and capital inputs, carbon dioxide intensity of the local electricity grid, among

others (Tibshirani, 1996). Table 2 shows that other variables have limited information content in

the Lasso regressions and are largely statistically insignificant in the OLS regressions as well. This

result continues to hold when we consider plants that have only one utility contract available to

them or when we consider inverse-hyperbolic sine transformations of the outcome variables, rather

than levels (Appendix Tables A.1 and A.2).

Motivated by these results, we estimate the kernel density of the distribution of average and

marginal electricity prices. Figure 2 shows these results. Average and marginal prices are closer

together for the high utilization plants because demand charges are spread over more units, but the

difference, while statistically significant, is not economically meaningful as the distributions overlap

for most of their support. The wedge between average and marginal prices is large for almost all

plants, even conditional on high electricity usage. As result, marginal prices seem to be rarely a

good proxy for average prices in U.S. manufacturing.

5 Discussion and Conclusion

This paper summarizes how and when the differences between average and marginal electricity

prices are relevant for climate policy. We show that marginal electricity prices are half of average

electricity prices, on average in the U.S. manufacturing sector and separately for eleven major

industry groups. We find that while the wedge between average and marginal electricity prices

is smaller for plants that use more electricity, the reduction in the wedge is limited. As a result,

caution is always warranted in using average price elasticities to interpret responses to marginal

11



price changes—even for the largest plants.

The policy implications of these results are consequential: since marginal energy prices are

below average prices, energy price elasticities based on average price changes will be higher than

the elasticity with respect to changes in the marginal price of energy. Therefore, the energy price

changes needed to achieve desired emissions reductions will look too low. Using average price

elasticities to estimate responses to marginal energy price changes may therefore lead to energy

policy that falls short of constraining climate change to “safe” levels. However, the use of either

average or marginal costs to calculate behavioral responses to energy price changes does not change

the optimal Pigouvian tax needed to internalize unpriced emissions externalities, which is derived

independently of these elasticities as the social cost of carbon; what changes is the extent to which

a carbon tax equal to the social cost of carbon will actually reduce industrial energy consumption

and, by extension, emissions.

What can policymakers do to ensure that the average price data collected in administrative

surveys are used appropriately? A first step is ensuring model calibrations are internally consistent:

if average price elasticities are used to predict behavioral responses, then the change in average

price resulting from a carbon price should be inputted, rather than the change in marginal price.

Continuing to use average price elasticities is likely more straightforward than collecting marginal

price data, which are difficult to observe. Existing models can therefore continue to be applied to

assess the effectiveness of policies to avoid dangerous climate change.
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Figures and Tables

Figure 1: Distribution of Average and Marginal Electricity Prices: All Industries

Notes: This figure shows the kernel density estimates of the distribution of average electricity prices, marginal
electricity prices, and average minus marginal electricity prices for U.S. manufacturing industries. Prices are in

cents per kWh.
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Figure 2: Distribution of Average and Marginal Prices: High and Low Electricity Usage Plants

(a) Average and Marginal Prices

(b) Difference Between Average and Marginal Prices

Notes: This figure shows the kernel density estimates of the distribution of average electricity prices and marginal

electricity prices (Panel A) and average minus marginal electricity prices (Panel B) for U.S. manufacturing industries.

Above and below median plants refer to plants with above and below median electricity usage. Prices are in cents

per kWh.
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Figure 3: Average - Marginal Electricity Price Wedge by State

0.3

0.5

0.7

Difference as 
 Share of Avg

Notes: This figure shows the difference between average and marginal electricity prices as a share of the average
price by state for the U.S. manufacturing industry. States with no data have insufficient manufacturing plants to

meet Census Bureau disclosure requirements.
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Table 1: Summary Statistics

Percentiles
Mean Std 10th Median 90th

Average Price (cents / kWh) 9.98 3.12 7.11 9.58 14.24
Marginal Price (cents / kWh) 4.82 2.40 2.23 4.59 7.67
Average - Marginal Price (cents / kWh) 5.16 2.78 1.90 4.89 8.69
Marginal Price / Average Price 0.51 0.21 0.22 0.58 0.79
Plant Revenue (million USD) 30.84 255.20 0.44 3.74 51.43
Electricity Intensity (kWh / $ revenue) 0.13 0.34 0.02 0.07 0.27
Electricity Expenditure (million USD) 0.28 2.12 0.00 0.02 0.48
Electricity Usage (million kWh) 4.06 38.11 0.02 0.24 5.57
Utilities Available (N) 3.12 3.45 1.00 1.00 7.00

N = 108000

Notes: This table shows summary statistics for the universe of manufacturing plants in the 2017 U.S. Census. All
dollar values are in 2017 USD.
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Table 2: Correlations of Electricity Prices and Plant Characteristics

Average - Marginal Price Average Price Marginal Price
OLS LASSO OLS LASSO OLS LASSO

Revenue (10 mil $) -0.001 -0.001 0.000
(0.002) (0.002) (0.000)

Electricity Intensity (kWh/$) -1.366*** -0.573*** -1.518*** -0.639*** -0.152*** -0.063**
(0.193) (0.097) (0.201) (0.105) (0.035) (0.023)

CO2 Intensity (kg/$) -1.313** -1.269* 0.044
(0.584) (0.652) (0.302)

BTU Intensity (BTU/$) 0.553*** 0.591*** 0.038
(0.116) (0.128) (0.040)

Electricity Costs (10 mil $) 0.580*** 0.784*** 0.204
(0.211) (0.259) (0.123)

Electricity Used (10 mil kWh) -0.044*** -0.022*** -0.056*** -0.024*** -0.012* -0.004*
(0.012) (0.008) (0.015) (0.007) (0.006) (0.002)

Labor (10 mil hours) -3.508*** -3.533*** -3.735*** -3.598*** -0.227
(0.875) (0.786) (0.894) (0.736) (0.232)

Capital Stock (10 mil $) -0.002 -0.003* -0.001
(0.002) (0.001) (0.001)

Materials Costs (10 mil $) 0.003* 0.003* 0.000
(0.002) (0.002) (0.001)

Fuels Costs (10 mil $) -0.137 -0.178** -0.041*
(0.086) (0.082) (0.022)

Utility Count (N) 0.014 -0.001 -0.015 -0.015
(0.025) (0.010) (0.027) (0.028)

N 108000 108000 108000 108000 108000 108000
AdjR2 0.247 0.242 0.546 0.541 0.646 0.645

Notes: Outcome variables are measured in cents per kWh. Columns 1, 3, and 5 are estimated using OLS and
columns 2, 4, and 6 are estimated using Lasso. All regressions include state and industry fixed effects, which are
not penalized in Lasso regressions. The sample includes the universe of manufacturing plants in the 2017 U.S.

Census. All dollar values are in 2017 USD.
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Appendix

A Data

This section includes additional details on the construction of the dataset.

Manufacturing data—We draw mainly on data from the U.S. Census Bureau that includes

inputs and outputs for the universe of manufacturing plants in 2017, the most recently available

Census year. Our steps to clean the data broadly follow other papers using the same data (e.g.,

Ganapati et al., 2020; Hawkins-Pierot and Wagner, 2023). First, we exclude observations that

have missing or negative values for average electricity prices, electricity intensity, revenue, or inputs

including capital stock, labor, materials, electricity and fuel expenditures. Second, we exclude

observations that have zero values for average electricity prices, revenue, labor costs, material costs,

or electricity expenditures. Third, we drop imputed administrative records. Finally, we exclude

remaining outliers for capital stocks, revenue, labor costs, materials costs, electricity expenditures,

or raw fuels expenditures that exceed 100 times the 99th percentile of the respective distributions

of these variables.

To calculate CO2 and BTU per dollar revenue, we use the closest available year of data from

the Manufacturing Energy Consumption Survey, which is 2018. The MECS includes about 15,000

plants across industries and oversamples large plants. This survey includes information on quantities

and expenditures of individual fuels that are unavailable in the CMF, which includes only total

expenditures on electricity and aggregate raw fuels, as well as quantity of electricity. We calculate

six-digit North American Industry Classification System (NAICS) energy intensity averages (million

BTU per USD of fuel expenditures and kg CO2 per USD fuel expenditures), which we then use

with the CMF to calculate CO2 intensity and BTU intensity at the plant level. We multiply the

industry averages from the MECS by the raw fuels expenditures available at the plant level from

the CMF to obtain plant-specific estimates of CO2 and BTU from raw fuels. To obtain total CO2

and BTU, we calculate embodied emissions and energy content from electricity using conversion

factors from the EPA’s eGrid product, which includes emissions factors by state that capture the

energy mix of each state’s upstream electricity grid. In this process, we exclude feedstock fuels and

process emissions from these calculations, as well as “by-product” fuels that aren’t associated with

well-defined CO2 and BTU conversion factors. Throughout, we deflate all monetary values to 2017

dollars using the input- and industry-specific price indices available from the National Bureau of
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Economic Research-Census of Economic Studies (NBER-CES) Productivity Database.

Electricity rate schedules—We merge marginal price data with the average price data available

in the CMF. We match marginal prices from OpenEI to the plants in the CMF at the ZIP code

level. We obtain a match rate of 78% of plants to utilities. We use the electricity quantities reported

in the CMF to determine each plant’s effective marginal price in instances where utilities offer a

tiered rate structure. When more than one rate schedule is available, we calculate the minimum

marginal price and the total number of utilities available to each plant by ZIP code. In the rare

instances where utilities offer industrial time-of-day pricing, we calculate the mean marginal price

across business hours. We find that our results are robust to including and excluding plants with

multiple rate schedules available to them. We exclude rate schedules that have negative prices and

outliers outside of the top and bottom 1% of the difference between average and marginal costs.

Throughout, we deflate marginal prices to 2017 dollars using the average of the energy deflators

across industries from the NBER-CES Productivity Database.
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B Figures and Tables

Figure A.1: Distribution of Average and Marginal Prices: Plants Serviced by One Utility Only

Notes: This figure shows the kernel density estimates of the distribution of average electricity prices, marginal
electricity prices, and average minus marginal electricity prices for U.S. manufacturing industries. The sample

includes only plants serviced by one electric utility. Prices are in cents per kWh.
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Figure A.2: Distribution of Average and Marginal Prices: by Industry

(a) Metals and Metal Products (b) Non-Metallic Minerals (c) Chemical Products

(d) Agricultural Machinery (e) Electrical Goods (f) Transportation Goods

(g) Food, Drink, and Tobacco (h) Textile, Leather, and Shoes (i) Timber and Furniture

(j) Print and Paper Products (k) Miscellaneous Industries

Notes: This figure shows the kernel density estimates of the distribution of average electricity prices, marginal

electricity prices, and average minus marginal electricity prices separately for 11 distinct manufacturing industry

groups. Prices are in cents per kWh.
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Table A.1: Correlations of Electricity Prices and Plant Characteristics, One Utility

Average - Marginal Price Average Price Marginal Price
OLS LASSO OLS LASSO OLS LASSO

Revenue (10 mil $) -0.001 -0.001 0.000
(0.004) (0.004) (0.001)

Electricity Intensity (kWh/$) -1.282*** -0.664*** -1.382*** -0.723*** -0.100*** -0.049**
(0.191) (0.103) (0.211) (0.112) (0.0306) (0.022)

CO2 Intensity (kg/$) -1.642** -1.465* 0.177
(0.751) (0.861) (0.295)

BTU Intensity (BTU/$) 0.523*** 0.526*** 0.003
(0.121) (0.134) (0.035)

Electricity Costs (10 mil $) 0.605*** 0.702*** 0.097**
(0.200) (0.202) (0.040)

Electricity Used (10 mil kWh) -0.033** -0.040*** -0.007** -0.004***
(0.013) (0.014) (0.003) (0.001)

Labor (10 mil hours) -3.138*** -3.433*** -3.272*** -3.597*** -0.135*
(0.997) (0.982) (0.999) (0.955) (0.077)

Capital Stock (10 mil $) -0.002 -0.002 0.000
(0.002) (0.002) (0.000)

Materials Costs (10 mil $) 0.002 0.003 0.001
(0.004) (0.003) (0.001)

Fuels Costs (10 mil $) -0.313*** -0.359*** -0.046**
(0.109) (0.109) (0.018)

N 61500 61500 61500 61500 61500 61500
AdjR2 0.264 0.260 0.656 0.653 0.789 0.789

Notes: Outcome variables are measured in cents per kWh. Columns 1, 3, and 5 are estimated using OLS and
columns 2, 4, and 6 are estimated using Lasso. All regressions include state and industry fixed effects, which are
not penalized in Lasso regressions. The sample includes manufacturing plants serviced by one electric utility only.

All dollar values are in 2017 USD.
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Table A.2: Correlations of Electricity Prices and Plant Characteristics

Average - Marginal Price Average Price Marginal Price
OLS LASSO OLS LASSO OLS LASSO

Revenue (10 mil $) 0.004 0.010 0.009 0.001
(0.020) (0.013) (0.007) (0.014)

Electricity Intensity (kWh/$) -0.806*** -0.727*** -0.471*** -0.485*** -0.123*** -0.040**
(0.077) (0.072) (0.031) (0.030) (0.030) (0.017)

CO2 Intensity (kg/$) 0.502** 0.415*** 0.241*** 0.259*** -0.020
(0.093) (0.096) (0.043) (0.039) (0.063)

BTU Intensity (BTU/$) 0.275*** 0.252*** 0.177*** 0.170*** 0.059***
(0.036) (0.032) (0.012) (0.011) (0.017)

Electricity Costs (10 mil $) 1.434*** 1.203*** 0.786*** 0.746*** 0.120***
(0.173) (0.142) (0.062) (0.064) (0.040)

Electricity Used (10 mil kWh) -0.557*** -0.542*** -0.274*** -0.247*** -0.014
(0.048) (0.048) (0.011) (0.014) (0.022)

Labor (10 mil hours) 0.067 -0.012 -0.051
(0.074) (0.026) (0.046)

Capital Stock (10 mil $) 0.006 0.002 -0.002
(0.006) (0.002) (0.006)

Materials Costs (10 mil $) 0.006 0.001 0.002
(0.011) (0.004) (0.006)

Fuels Costs (10 mil $) -0.393*** -0.271** -0.264*** -0.073*
(0.090) (0.037) (0.036) (0.036)

Utility Count (N) 0.006 -0.002 -0.065 -0.065
(0.027) (0.004) (0.046) (0.046)

N 108000 108000 108000 108000 108000 108000
AdjR2 0.360 0.358 0.554 0.554 0.520 0.520

Notes: Outcome variables are measured in cents per kWh. Dependent and independent variables are all inverse
hyperbolic sine transformations. Columns 1, 3, and 5 are estimated using OLS and columns 2, 4, and 6 are

estimated using Lasso. All regressions include state and industry fixed effects, which are not penalized in Lasso
regressions. The sample includes the universe of manufacturing plants in the 2017 U.S. Census. All dollar values

are in 2017 USD.
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